Publications by authors named "Neng-Qi Li"

Generally, orchids highly depend on specific fungi for seed germination and subsequent seedling development in nature. For medicinal orchids, obtaining compatible fungi is prerequisite for imitation of wild cultivation and conservation. In this study, the two important traditional Chinese medicinal orchids, and , were studied to screen out effective fungi for seed germination and seedling development.

View Article and Find Full Text PDF

Mycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids.

View Article and Find Full Text PDF

Orchids produce large numbers of dust-like seeds that rely heavily on orchid mycorrhizal fungi (OMFs) for germination. Using OMFs to facilitate orchid proliferation is considered an effective method for orchid conservation but still presents challenges in practice. In this study, orchid seed-fungus complexes, in which orchid seeds and fungal mycelia were embedded together to form granules, were developed as platforms to facilitate seed germination and seedling production.

View Article and Find Full Text PDF

Using orchid mycorrhizal fungi (OMFs) to facilitate orchid proliferation is considered an effective method of orchid conservation. Based on the success of using in situ seedling baiting to obtain plant growth-promoting fungi in our previous study, in this study, we developed the method of using ex situ seedling baiting to capture seedling-associated fungi from . We collected substrates (e.

View Article and Find Full Text PDF

Background: Orchids require specific mycorrhizal associations for seed germination. During symbiotic germination, the seed coat is the first point of fungal attachment, and whether the seed coat plays a role in the identification of compatible and incompatible fungi is unclear. Here, we compared the effects of compatible and incompatible fungi on seed germination, protocorm formation, seedling development, and colonization patterns in Dendrobium officinale; additionally, two experimental approaches, seeds pretreated with NaClO to change the permeability of the seed coat and fungi incubated with in vitro-produced protocorms, were used to assess the role of seed coat played during symbiotic seed germination.

View Article and Find Full Text PDF