Neuroinflammation is considered to be one of the driving factors in Parkinson's disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different mutations (PD). Based on the results of RNA sequencing, qPCR and ELISA, we revealed transcriptional and post-transcriptional changes in HD and PD neurons cultivated in HD and PD glial-conditioned medium.
View Article and Find Full Text PDFThe multigene family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied.
View Article and Find Full Text PDFBacterial infections represent an unsolved problem today since bacteria can evade antibiotics and suppress the host's immune response. A family of TRIM proteins is known to play a role in antiviral defense. However, the data on the involvement of the corresponding genes in the antibacterial response are limited.
View Article and Find Full Text PDFParkinson's disease (PD) is the most serious movement disorder, but the actual cause of this disease is still unknown. Induced pluripotent stem cell-derived neural cultures from PD patients carry the potential for experimental modeling of underlying molecular events. We analyzed the RNA-seq data of iPSC-derived neural precursor cells (NPCs) and terminally differentiated neurons (TDNs) from healthy donors (HD) and PD patients with mutations in published previously.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative pathology caused by the progressive loss of dopaminergic neurons in the substantia nigra. Juvenile PD is known to be strongly associated with mutations in the PARK2 gene encoding E3 ubiquitin ligase Parkin. Despite numerous studies, molecular mechanisms that trigger PD remain largely unknown.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative diseases characterized by progressive loss of midbrain dopaminergic neurons in the substantia nigra. Mutations in the gene are a frequent cause of familial forms of PD. Sustained chronic neuroinflammation in the central nervous system makes a significant contribution to neurodegeneration events.
View Article and Find Full Text PDFParkinson's disease (PD) is a complex systemic disorder caused by neurodegenerative processes in the brain that are mainly characterized by progressive loss of dopaminergic neurons in the substantia nigra. About 10% of PD cases have been linked to specific gene mutations (Zafar and Yaddanapudi, 2022) including the gene that encodes a RING domain-containing E3 ubiquitin ligase Parkin. PD-Parkin patients have a younger onset, longer disease duration, and more severe clinical symptoms in comparison to PD patients with unknown causative PD mutations (Zhou et al.
View Article and Find Full Text PDFEukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs).
View Article and Find Full Text PDFTemplate activating factor-I (TAF-I) is a multifunctional protein involved in various biological processes including the inhibition of histone acetylation, DNA replication, cell cycle regulation, and oncogenesis. Two main TAF-I isoforms with different N-termini, TAF-Iα and TAF-Iβ (SET), are expressed in cells. There are numerous data about functional properties of TAF-Iβ, whereas the effects of TAF-Iα remain largely unexplored.
View Article and Find Full Text PDFTRIM14 is an important component of innate immunity that defends organism from various viruses. It was shown that TRIM14 restricted influenza A virus (IAV) infection in cell cultures in an interferon-independent manner. However, it remained unclear whether TRIM14 affects IAV reproduction and immune system responses upon IAV infection in vivo.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative pathology resulting from the degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Neurotrophic factors (NTFs) and their receptors are key regulators of the survival, differentiation, and development of neurons. However, the role of these factors in the pathogenesis of PD is still unclear.
View Article and Find Full Text PDFStem Cells Dev
January 2020
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates.
View Article and Find Full Text PDFIn ovarian somatic cells, PIWI-interacting small RNAs (piRNAs) against transposable elements are mainly produced from the ∼180-kb () locus. transcripts are gathered into foci, located close to the nuclear envelope, and processed into piRNAs in the cytoplasmic Yb bodies. The mechanism of Yb body formation remains unknown.
View Article and Find Full Text PDFHow the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood. Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and repositioning from the nuclear envelope. This increases the chromatin density in a fraction of topologically-associating domains (TADs) enriched in active chromatin and enhances interactions between active and inactive chromatin.
View Article and Find Full Text PDFBackground: In most mammalian cell lines, chromatin located at the nuclear periphery is represented by condensed heterochromatin, as evidenced by microscopy observations and DamID mapping of lamina-associated domains (LADs) enriched in dimethylated Lys9 of histone H3 (H3K9me2). However, in Kc167 cell culture, the only Drosophilla cell type where LADs have previously been mapped, they are neither H3K9me2-enriched nor overlapped with the domains of heterochromatin protein 1a (HP1a).
Results: Here, using cell type-specific DamID we mapped genome-wide LADs, HP1a and Polycomb (Pc) domains from the central brain, Repo-positive glia, Elav-positive neurons and the fat body of Drosophila third instar larvae.
We performed a cytogenetic analysis of the results of CRISPR/Cas9-correction of G2019S mutation in LRRK2 gene associated with Parkinson's disease. Genome editing was performed on induced pluripotent stem cells derived from fibroblasts of a patient carrying this mutation. A mosaic variant of tetraploidy 92 XXYY/46,XY (24-43% cells from various clones) was found in neuronal precursors differentiated from the induced pluripotent stem cells after gene editing procedure.
View Article and Find Full Text PDFOver the last few years, in vitro models, based on patient-derived induced pluripotent stem cells (iPSCs), have received considerable attention for modeling different neurodegenerative disorders. Using this model, we analyzed transcription of 15 tripartite motif (trim) genes in iPSCs, derived from the different groups: Parkinson's disease (PD) patients bearing mutations in different genes, patient with the sporadic form of PD, and the healthy individuals. The transcription was observed during neuronal differentiation of the cells in vitro into neuronal stem cells and terminally differentiated neurons.
View Article and Find Full Text PDFIn the present research, we have studied an influence of enhanced expression TRIM14 on alphavirus Sindbis (SINV, Togaviridae family) infection. In the HEK293 cells transfected with human trim14 gene (HEK-trim14), SINV yield after infection was decreased 1000-10,000 times (3-4 lg of TCD50/ml) at 24 h p.i.
View Article and Find Full Text PDFThe trim14 (pub, KIAA0129) gene encodes the TRIM14 protein which is a member of the tripartite motif (TRIM) family. Previously, we revealed high expression levels of trim14 in HIV- or SIV-associated lymphomas and demonstrated the influence of trim14 on mesodermal differentiation of mouse embryonic stem cells (mESC). In the present work, to elucidate the role of trim14 in normal and pathological processes in the cell, we used two different types of cells transfected with trim14: mESC and human HEK293.
View Article and Find Full Text PDFTheoretical models suggest that gene silencing at the nuclear periphery may involve "closing" of chromatin by transcriptional repressors, such as histone deacetylases (HDACs). Here we provide experimental evidence confirming these predictions. Histone acetylation, chromatin compactness, and gene repression in lamina-interacting multigenic chromatin domains were analyzed in Drosophila S2 cells in which B-type lamin, diverse HDACs, and lamina-associated proteins were downregulated by dsRNA.
View Article and Find Full Text PDF