Duchenne muscular dystrophy (DMD) is the most prevalent inherited myopathy affecting children, caused by genetic loss of the gene encoding the dystrophin protein. Here we have investigated the use of the CRISPR-Cas9 system and a double-cut strategy, delivered using a pair of adeno-associated virus serotype 9 (AAV9) vectors, for dystrophin restoration in the severely affected dystrophin/utrophin double-knockout (dKO) mouse. Single guide RNAs were designed to excise exon 23, with flanking intronic regions repaired by non-homologous end joining.
View Article and Find Full Text PDFHaplotyping individual full-length transcripts can be important in diagnosis and treatment of certain genetic diseases. One set of diseases, repeat expansions of simple tandem repeat sequences are the cause of over 40 neurological disorders. In many of these conditions, expanding a polymorphic repeat beyond a given threshold has been strongly associated with disease onset and severity.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2020
Novel treatments for Huntington's disease (HD), a progressive neurodegenerative disorder, include selective targeting of the mutant allele of the huntingtin gene (m) carrying the abnormally expanded disease-causing cytosine-adenine-guanine (CAG) repeat. WVE-120101 and WVE-120102 are investigational stereopure antisense oligonucleotides that enable selective suppression of m by targeting single-nucleotide polymorphisms (SNPs) that are in haplotype phase with the CAG repeat expansion. Recently developed long-read sequencing technologies can capture CAG expansions and distant SNPs of interest and potentially facilitate haplotype-based identification of patients for clinical trials of oligonucleotide therapies.
View Article and Find Full Text PDFBackground: The huntingtin gene () pathogenic cytosine-adenine-guanine (CAG) repeat expansion responsible for Huntington disease (HD) is phased with single nucleotide polymorphisms (SNPs), providing targets for allele-selective treatments.
Objective: This prospective observational study defined the frequency at which rs362307 (SNP1) or rs362331 (SNP2) was found on the same allele with pathogenic CAG expansions.
Methods: Across 7 US sites, 202 individuals with HD provided blood samples that were processed centrally to determine the number and size of CAG repeats, presence and heterozygosity of SNPs, and whether SNPs were present on the mutant allele using long-read sequencing and phasing.
Whereas stereochemical purity in drugs has become the standard for small molecules, stereoisomeric mixtures containing as many as a half million components persist in antisense oligonucleotide (ASO) therapeutics because it has been feasible neither to separate the individual stereoisomers, nor to synthesize stereochemically pure ASOs. Here we report the development of a scalable synthetic process that yields therapeutic ASOs having high stereochemical and chemical purity. Using this method, we synthesized rationally designed stereopure components of mipomersen, a drug comprising 524,288 stereoisomers.
View Article and Find Full Text PDFUnlabelled: RNA interference (RNAi) is a potent and specific mechanism for regulating gene expression. Harnessing RNAi to silence genes involved in disease holds promise for the development of a new class of therapeutics. Delivery is key to realizing the potential of RNAi, and lipid nanoparticles (LNP) have proved effective in delivery of siRNAs to the liver and to tumors in animals.
View Article and Find Full Text PDFNext-generation sequencing has not been applied to protein-protein interactome network mapping so far because the association between the members of each interacting pair would not be maintained in en masse sequencing. We describe a massively parallel interactome-mapping pipeline, Stitch-seq, that combines PCR stitching with next-generation sequencing and used it to generate a new human interactome dataset. Stitch-seq is applicable to various interaction assays and should help expand interactome network mapping.
View Article and Find Full Text PDFBackground: While increasing numbers of small interfering RNA (siRNA) therapeutics enter into clinical trials, the quantification of siRNA from clinical samples for pharmacokinetic studies remains a challenge. This challenge is even more acute for the quantification of chemically modified and formulated siRNAs such as those typically required for systemic delivery.
Results: Here, we describe a novel method, heating-in-Triton quantitative reverse transcription PCR (HIT qRT-PCR) that improves upon the stem-loop RT-PCR technique for the detection of formulated and chemically modified siRNAs from plasma and tissue.
We have developed a nematode transformation vector carrying the bacterial neomycin resistance gene (NeoR) and shown that it could confer resistance to G-418 on both wild-type Caenorhabditis elegans and C. briggsae. This selection system allows hands-off maintenance and enrichment of transgenic worms carrying non-integrated transgenes on selective plates.
View Article and Find Full Text PDFGenes and gene products do not function in isolation but within highly interconnected 'interactome' networks, modeled as graphs of nodes and edges representing macromolecules and interactions between them, respectively. We propose to investigate genotype-phenotype associations by methodical use of alleles that lack single interactions, while retaining all others, in contrast to genetic approaches designed to eliminate gene products completely. We describe an integrated strategy based on the reverse yeast two-hybrid system to isolate and characterize such edge-specific, or 'edgetic', alleles.
View Article and Find Full Text PDFAlthough a highly accurate sequence of the Caenorhabditis elegans genome has been available for 10 years, the exact transcript structures of many of its protein-coding genes remain unsettled. Approximately two-thirds of the ORFeome has been verified reactively by amplifying and cloning computationally predicted transcript models; still a full third of the ORFeome remains experimentally unverified. To fully identify the protein-coding potential of the worm genome including transcripts that may not satisfy existing heuristics for gene prediction, we developed a computational and experimental platform adapting rapid amplification of cDNA ends (RACE) for large-scale structural transcript annotation.
View Article and Find Full Text PDFCurrent yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a "second-generation" high-quality, high-throughput Y2H data set covering approximately 20% of all yeast binary interactions.
View Article and Find Full Text PDFDifferential regulation of gene expression is essential for cell fate specification in metazoans. Characterizing the transcriptional activity of gene promoters, in time and in space, is therefore a critical step toward understanding complex biological systems. Here we present an in vivo spatiotemporal analysis for approximately 900 predicted C.
View Article and Find Full Text PDFMech Ageing Dev
December 2005
Bloom syndrome is caused by mutation of the Bloom helicase (BLM), a member of the RecQ helicase family. Loss of BLM function results in genomic instability that causes a high incidence of cancer. It has been demonstrated that BLM is important for maintaining genomic stability by playing a role in DNA recombination and repair; however, the exact function of BLM is not clearly understood.
View Article and Find Full Text PDFDAF-16/forkhead transcription factor, the downstream target of the insulin-like signaling in Caenorhabditis elegans, is indispensable for both lifespan regulation and stress resistance. Here, we demonstrate that c-Jun N-terminal kinase (JNK) is a positive regulator of DAF-16 in both processes. Our genetic analysis suggests that the JNK pathway acts in parallel with the insulin-like signaling pathway to regulate lifespan and both pathways converge onto DAF-16.
View Article and Find Full Text PDF