Publications by authors named "Nenad Malenica"

Transcriptional silencing of 35S rDNA loci inherited from one parental species is occurring relatively frequently in allopolyploids. However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid (2 = 4 = 32, genome composition BBDD) and allohexaploid (2 = 6 = 48, AABBDD), and their genome donors, (2 = 16, AA), (2 = 16, BB) and (2 = 16, DD).

View Article and Find Full Text PDF

Grapevine collections play an important role, especially in the study of viruses and virus-like pathogens. In 2009, after an initial ELISA screening for eight viruses (arabis mosaic virus, grapevine fanleaf virus, grapevine fleck virus, grapevine leafroll-associated viruses 1, 2, and 3, and grapevine viruses A and B), a collection of 368 grapevine accessions representing 14 different Croatian autochthonous cultivars and containing single or mixed infection of viruses was established to further characterize the viral pathogens. Subsequently, Western blot, RT-PCR, cloning, and sequencing revealed that grapevine rupestris stem pitting-associated virus was frequently found in accessions of the collection, with isolates showing substantial genetic diversity in the helicase and coat protein regions.

View Article and Find Full Text PDF

The multiple-stress effects on plant physiology and gene expression are being intensively studied lately, primarily in model plants such as Arabidopsis, where the effects of six stressors have simultaneously been documented. In maize, double and triple stress responses are obtaining more attention, such as simultaneous drought and heat or heavy metal exposure, or drought in combination with insect and fungal infestation. To keep up with these challenges, maize natural variation and genetic engineering are exploited.

View Article and Find Full Text PDF

Protein degradation is essential in plant growth and development. The stability of Cullin3 substrate adaptor protein BPM1 is regulated by multiple environmental cues pointing on manifold control of targeted protein degradation. A small family of six MATH-BTB genes (BPM1-6) is described in Arabidopsis thaliana.

View Article and Find Full Text PDF

MATH-BTB proteins are known to act as substrate-specific adaptors of CUL3-based E3 ligases in the ubiquitin proteasome pathway. Their BTB domain binds to CUL3 scaffold proteins and the less conserved MATH domain targets a highly diverse collection of substrate proteins to promote their ubiquitination and subsequent degradation. In plants, a significant expansion of the MATH-BTB family occurred in the grasses.

View Article and Find Full Text PDF

Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes.

View Article and Find Full Text PDF

Polar transport of the phytohormone auxin throughout plants shapes morphogenesis and is subject to stringent and specific control. Here, we identify basic cellular activities connected to translational control of gene expression as sufficient to specify auxin-mediated development. Mutants in subunits of Arabidopsis Elongator, a protein complex modulating translational efficiency via maturation of tRNAs, exhibit defects in auxin-controlled developmental processes, associated with reduced abundance of PIN-formed (PIN) auxin transport proteins.

View Article and Find Full Text PDF

Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated.

View Article and Find Full Text PDF

Polar transport of the phytohormone auxin controls numerous growth responses in plants. Molecular characterization of auxin transport in Arabidopsis thaliana has provided important insights into the mechanisms underlying the regulation of auxin distribution. In particular, the control of subcellular localization and expression of PIN-type auxin efflux components appears to be fundamental for orchestrated distribution of the growth regulator throughout the entire plant body.

View Article and Find Full Text PDF

In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or quaternary veins, and vascular islands.

View Article and Find Full Text PDF

Root gravitropism describes the orientation of root growth along the gravity vector and is mediated by differential cell elongation in the root meristem. This response requires the coordinated, asymmetric distribution of the phytohormone auxin within the root meristem, and depends on the concerted activities of PIN proteins and AUX1 - members of the auxin transport pathway. Here, we show that intracellular trafficking and proteasome activity combine to control PIN2 degradation during root gravitropism.

View Article and Find Full Text PDF

With the discovery of the phytohormone auxin in the late 1920s, it became possible to link the regulation of complex plant growth responses to a single biologically active compound. Among all the plant growth regulators characterised so far, only auxin appears to be actively transported throughout the plant to create complex variations in concentration patterns and flow directions over time. This stimulated interest in the specific mechanisms underlying auxin transport as key factors in plant growth responses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: