Publications by authors named "Nenad Jovicic"

In this paper, one solution for an end-to-end deep neural network for autonomous driving is presented. The main objective of our work was to achieve autonomous driving with a light deep neural network suitable for deployment on embedded automotive platforms. There are several end-to-end deep neural networks used for autonomous driving, where the input to the machine learning algorithm are camera images and the output is the steering angle prediction, but those convolutional neural networks are significantly more complex than the network architecture we are proposing.

View Article and Find Full Text PDF

We propose a novel simple method for quantitative and qualitative finger-tapping assessment based on miniature inertial sensors (3D gyroscopes) placed on the thumb and index-finger. We propose a simplified description of the finger tapping by using a single angle, describing rotation around a dominant axis. The method was verified on twelve subjects, who performed various tapping tasks, mimicking impaired patterns.

View Article and Find Full Text PDF

Transcutaneous activation of muscles with electrical stimulation has limited selectivity in recruiting paralyzed muscles in stroke patients. However, the selectivity could be increased by the application of smaller electrodes and their appropriate positioning on the skin. We developed a method for selecting the appropriate positions of the stimulating electrodes based on electromyography (EMG).

View Article and Find Full Text PDF

Background/aim: Postural impairments and gait disorders in Parkinson's disease (PD) affect limits of stability, impaire postural adjustment, and evoke poor responses to perturbation. In the later stage of the disease, some patients can suffer from episodic features such as freezing of gait (FOG). Objective gait assessment and monitoring progress of the disease can give clinicians and therapist important information about changes in gait pattern and potential gait deviations, in order to prevent concomitant falls.

View Article and Find Full Text PDF

Alternation of walking pattern decreases quality of life and may result in falls and injuries. Freezing of gait (FOG) in Parkinson's disease (PD) patients occurs occasionally and intermittently, appearing in a random, inexplicable manner. In order to detect typical disturbances during walking, we designed an expert system for automatic classification of various gait patterns.

View Article and Find Full Text PDF

A new data processing method is described for estimation of angles of leg segments, joint angles, and trajectories in the sagittal plane from data recorded by sensors units mounted at the lateral side of leg segments. Each sensor unit comprises a pair of three-dimensional accelerometers which send data wirelessly to a PC. The accelerometer signals comprise time-varying and temperature-dependent offset, which leads to drift and diverged signals after integration.

View Article and Find Full Text PDF

Background: The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement.

View Article and Find Full Text PDF

A new method for estimation of angles of leg segments and joints, which uses accelerometer arrays attached to body segments, is described. An array consists of two accelerometers mounted on a rigid rod. The absolute angle of each body segment was determined by band pass filtering of the differences between signals from parallel axes from two accelerometers mounted on the same rod.

View Article and Find Full Text PDF