Alzheimer's disease (AD) is characterized by neurofibrillary tangles and extracellular amyloid-β plaques (Aβ). Despite ongoing research, some ambiguity remains surrounding the role of Aβ in the pathogenesis of this neurodegenerative disease. While several studies have focused on the mutations associated with AD, our understanding of the epigenetic contributions to the disease remains less clear.
View Article and Find Full Text PDFSynapse loss and neuronal death are key features of Alzheimer's disease pathology. Disrupted axonal transport of mitochondria is a potential mechanism that could contribute to both. As the major producer of ATP in the cell, transport of mitochondria to the synapse is required for synapse maintenance.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2005
IGF-II gut drives mucosal growth during gestation. IGF binding protein-2 (IGFBP-2) has a high affinity for IGF-II and tightly regulates IGF-II availability during fetal and early neonatal growth. We have previously demonstrated that glucocorticoids alter IGF homeostasis in the neonatal ileum, but the mechanism(s) by which this occurs is poorly understood.
View Article and Find Full Text PDFBackground: IEC-18 cells are a non-transformed, immortal cell line derived from juvenile rat ileal crypt cells. They may have experimental advantages over tumor-derived gastrointestinal lineages, including preservation of phenotype, normal endocrine responses and retention of differentiation potential. However, their proclivity for spontaneous differentiation/transformation may be stereotypical and could represent a more profound experimental confounder than previously realized.
View Article and Find Full Text PDFAluminum (Al) compounds are neurotoxic and have been shown to induce experimental neurodegeneration although the mechanism of this effect is unclear. In order to study this neurotoxic effect of Al, we have developed an in vitro model system using Al maltolate and human NT2 cells. Al maltolate at 500 microM caused significant cell death with a 24-h incubation and this toxicity was even more evident after 48 h.
View Article and Find Full Text PDFWe have previously hypothesized that IGF-I is a mediator of dexamethasone (DEX) effect in the newborn mouse ileum-a model designed to mimic the precocious mucosal maturation associated with spontaneous ileal perforations in extremely premature neonates. We have further investigated this hypothesis using in vivo and in vitro models of accelerated epithelial migration (a transient property, temporally associated with mucosal maturation). These experiments include a steroid-treatment model comparing IGF-I immunolocalization with bromo-deoxyuridine (BrdU)-pulse-labeling, as a means of assessing epithelial cell migration, within the ileum of newborn mice that received either daily intraperitoneal injections of DEX (1 microg/gm) or vehicle.
View Article and Find Full Text PDF