Transition metals are essential, but deregulation of their metabolism causes toxicity. Here, we report that the compound NSC319726 binds copper to induce oxidative stress and arrest glioblastoma-patient-derived cells at picomolar concentrations. Pharmacogenomic analysis suggested that NSC319726 and 65 other structural analogs exhibit lethality through metal binding.
View Article and Find Full Text PDFPrecision medicine in oncology requires not only identification of cancer-associated mutations but also effective drugs for each cancer genotype, which is still a largely unsolved problem. One approach for the latter challenge has been large-scale testing of small molecules in genetically characterized cell lines. We hypothesized that compounds with high cell-line-selective lethality exhibited consistent results across such pharmacogenomic studies.
View Article and Find Full Text PDFUnlabelled: mTOR kinase inhibitors block mTORC1 and mTORC2 and thus do not cause the mTORC2 activation of AKT observed with rapamycin. We now show, however, that these drugs have a biphasic effect on AKT. Inhibition of mTORC2 leads to AKT serine 473 (S473) dephosphorylation and a rapid but transient inhibition of AKT T308 phosphorylation and AKT signaling.
View Article and Find Full Text PDFNew anticancer drugs that target oncogenic signaling molecules have greatly improved the treatment of certain cancers. However, resistance to targeted therapeutics is a major clinical problem and the redundancy of oncogenic signaling pathways provides back-up mechanisms that allow cancer cells to escape. For example, the AKT and PIM kinases produce parallel oncogenic signals and share many molecular targets, including activators of cap-dependent translation.
View Article and Find Full Text PDF