We explain the appearance of magic angles and fractional Chern insulators in twisted K-valley homobilayer transition metal dichalcogenides by mapping their continuum model to a Landau level problem. Our approach relies on an adiabatic approximation for the quantum mechanics of valence band holes in a layer-pseudospin field that is valid for sufficiently small twist angles and on a lowest Landau level approximation that is valid for sufficiently large twist angles. It provides a simple qualitative explanation for the nearly ideal quantum geometry of the lowest moiré miniband at particular twist angles, predicts that topological flat bands occur only when the valley-dependent moiré potential is sufficiently strong compared to the interlayer tunneling amplitude, and provides a convenient starting point for the study of interactions.
View Article and Find Full Text PDFWe employ a functional renormalization group approach to ascertain the pairing mechanism and symmetry of the superconducting phase observed in rhombohedral trilayer graphene. Superconductivity in this system occurs in a regime of carrier density and displacement field with a weakly distorted annular Fermi sea. We find that repulsive Coulomb interactions can induce electron pairing on the Fermi surface by taking advantage of momentum-space structure associated with the finite width of the Fermi sea annulus.
View Article and Find Full Text PDFWe present a theory of superconductivity in twisted bilayer graphene in which attraction is generated between electrons on the same honeycomb sublattice when the system is close to a sublattice polarization instability. The resulting Cooper pairs are spin-polarized valley singlets. Because the sublattice polarizability is mainly contributed by interband fluctuations, superconductivity occurs over a wide range of filling fraction.
View Article and Find Full Text PDFMotivated by recent nonlocal transport studies of quantum-Hall-magnet (QHM) states formed in monolayer graphene's N=0 Landau level, we study the scattering of QHM magnons by gate-controlled junctions between states with different integer filling factors ν. For the ν=1|-1|1 geometry we find that magnons are weakly scattered by electric potential variation in the junction region, and that the scattering is chiral when the junction lacks a mirror symmetry. For the ν=1|0|1 geometry, we find that kinematic constraints completely block magnon transmission if the incident angle exceeds a critical value.
View Article and Find Full Text PDFGraphene multilayers with flat moiré minibands can exhibit the quantized anomalous Hall effect due to the combined influence of spontaneous valley polarization and topologically nontrivial valley-projected bands. The sign of the Hall effect in these Chern insulators can be reversed either by applying an external magnetic field, or by driving a transport current through the system. We propose a current-driven mechanism whereby reversal occurs along lines in the (current I, magnetic-field B) control parameter space with slope dI/dB=(e/h)MA_{M}(1-γ^{2})/γ, where M is the magnetization, A_{M} is the moiré unit cell area, and γ<1 is the ratio of the chemical potential difference between valleys along a domain wall to the electrical bias eV.
View Article and Find Full Text PDF