Publications by authors named "Nemethova M"

The inflammation and coagulopathy during coronavirus disease (COVID-19) impairs the efficiency of the current stroke treatments. Remote ischaemic conditioning (RIC) has shown potential in recent years to protect the brain and other organs against pathological conditions. This study aimed to evaluate the efficiency of RIC in brain infarct size using TTC staining and lung injury reduction by H&E staining during the hyper-inflammatory response in rats.

View Article and Find Full Text PDF

Ischemic tolerance is a robust internal defense mechanism of all living organisms. The effectiveness of this mechanism has been repeatedly demonstrated in experiments, but a comprehensive review of the clinical applicability of this phenomenon in practice has not yet been published. The results in clinical practice sound ambiguous and unconvincing in comparison with the results of experimental studies.

View Article and Find Full Text PDF

A brain stroke is a serious disease and the second leading cause of death in the European Union. Carotid stenosis accounts for 15% of all ischemic cerebral strokes. However, there is currently no effective screening for carotid disease.

View Article and Find Full Text PDF

We have recently shown that the blood cell-derived secretome of remote ischaemic (RIC)-conditioned individuals provides an external source of neuroprotection. In this study, we identified the bioactive compounds from the total proteins released by those cells. Our main strategy was to separate protein-protein complexes while maintaining their native structure and testing their bioactive properties.

View Article and Find Full Text PDF

Background: A stroke is an acute damage to a certain area of a nerve tissue of the brain. In developed countries, it ranks second among the most often causes of death and is also the leading cause of disability. Recent findings emphasize the significant neuroprotective effect of conditioning on the course and rate of recovery after ischemic attack; however the molecular mechanism of ischemic tolerance induced by conditioning is still not completely explored.

View Article and Find Full Text PDF

Attachment of adhesive molecules on cell culture surfaces to restrict cell adhesion to defined areas and shapes has been vital for the progress of in vitro research. In currently existing patterning methods, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome, and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photoimmobilization technique, comprising a light-dose-dependent patterning step and a subsequent functionalization of the pattern via click chemistry.

View Article and Find Full Text PDF

Recently, the function of blood cells in remote ischemic conditioning (RIC) mediated neuroprotection was undoubtedly confirmed. In the present paper, we have focused on the role of blood elements in glutamate homeostasis. The blood of remote conditioned (tolerant) animals was incubated ex vivo with 100 μM glutamate, and the quantitative and qualitative changes of excitatory amino acid transporters (EAAT 1, 2, and 3) were determined.

View Article and Find Full Text PDF

Glutamate represents the main excitatory neurotransmitter in the mammalian brain; however, its excessive elevation in the extracellular space is cytotoxic and can result in neuronal death. The ischemia initiated brain damage reflects changes in glutamate concentration in peripheral blood. This paper investigated the role of the brain in blood efflux of the glutamate in an improved tolerance of the brain tissue to ischemic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Cell migration relies on actin structures like lamellipodia and filopodia, along with focal adhesions, to facilitate movement; however, Ena/VASP proteins, previously thought to hinder this process, actually enhance it in mouse cell lines.
  • The study found that removing Ena/VASP proteins using CRISPR/Cas9 led to less actin assembly in lamellipodia and altered their structure, affecting the geometry and reducing filament numbers and lengths.
  • Ena/VASP loss also disrupted microspike formation, impaired integrin-mediated adhesion, and decreased traction forces, indicating these proteins play an essential role in promoting cell migration.
View Article and Find Full Text PDF

The aim of this study was to verify the possibility of preparation and effectiveness of the use of blood plasma containing an effector of ischemic tolerance activated by applying two sublethal stresses to a donor. As sublethal stresses, two periods of 20-minute hindlimb ischemia were used with a two-day interval between them. Active plasma was isolated six hours after the second hindlimb ischemia.

View Article and Find Full Text PDF

The indirect use of the protective potential of stem cells in the form of cell secretomes has become an attractive strategy in regenerative medicine. In the present work, we studied the paracrine activity of blood cells that could be modulated towards a neuroprotective nature using in vivo remote conditioning (i.e.

View Article and Find Full Text PDF

It has been shown that ischemia of remote organs can generate resistance to ischemic conditions within sensitive brain tissues. However, only limited information about its mechanism is available. In the present paper, we used hind-limb ischemia by tourniquet to generate early remote ischemic tolerance in rats.

View Article and Find Full Text PDF

The formation of neuronal dendrite branches is fundamental for the wiring and function of the nervous system. Indeed, dendrite branching enhances the coverage of the neuron's receptive field and modulates the initial processing of incoming stimuli. Complex dendrite patterns are achieved through a dynamic process of branch formation, branch extension and retraction.

View Article and Find Full Text PDF

Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated.

View Article and Find Full Text PDF

Ischemic tolerance (IT) has gained attention as an attractive strategy for improving stroke outcome. Recently, it was shown that signal responsible for rapid IT induction (tolerance induction factor - TIF) is transmitted via circulating blood. In this study, we have hypothesized about the role of the blood cell compartment in TIF production.

View Article and Find Full Text PDF

Pyramidal cells in the CA1 brain region exhibit an ischemic tolerance after delayed postconditioning; therefore, this approach seems to be a promising neuroprotective procedure in cerebral postischemic injury improvement. However, little is known about the effect of postconditioning on protein expression patterns in the brain, especially in the affected hippocampal neurons after global cerebral ischemia. This study is focused on the examination of the ischemia-vulnerable CA1 neuronal layer and on the acquisition of protection from delayed neuronal death after ischemia.

View Article and Find Full Text PDF

Trimethyltin (TMT) is a toxic substance formerly used as a catalyst in the production of organic substances, as well as in industry and agriculture. TMT poisoning has caused death or severe injury in many dozens of people. The toxicity of TMT is mediated by dose dependent selective damage to the limbic system in humans and other animals, specifically the degeneration of CA1 neurons in the hippocampus.

View Article and Find Full Text PDF

The impact of therapeutic intervention in stroke depends on its appropriate timing during infarct evolution. We have studied markers of brain tissue damage initiated by permanent occlusion of the middle cerebral artery (MCAO) at three time points during which the infarct spread (1, 3 and 6 h). Based on Evans Blue extravasation and immunohistochemical detection of neurons, we confirmed continuous disruption of blood-brain barrier and loss of neurons in the ischaemic hemisphere that peaked at the sixth hour, especially in the core.

View Article and Find Full Text PDF

Alkaptonuria (AKU) is an autosomal recessive disorder caused by mutations in homogentisate-1,2-dioxygenase (HGD) gene leading to the deficiency of HGD enzyme activity. The DevelopAKUre project is underway to test nitisinone as a specific treatment to counteract this derangement of the phenylalanine-tyrosine catabolic pathway. We analysed DNA of 40 AKU patients enrolled for SONIA1, the first study in DevelopAKUre, and of 59 other AKU patients sent to our laboratory for molecular diagnostics.

View Article and Find Full Text PDF

Background: Alkaptonuria (AKU) is a serious genetic disease characterised by premature spondyloarthropathy. Homogentisate-lowering therapy is being investigated for AKU. Nitisinone decreases homogentisic acid (HGA) in AKU but the dose-response relationship has not been previously studied.

View Article and Find Full Text PDF

To test the appropriateness of using delayed remote ischemic postconditioning against damage caused to the hippocampus by ischemia or apoptosis inducing intoxication, we chose 10-min normothermic ischemia induced by four-vessel occlusion or kainate injection (8 mg/kg i.p.) in rats.

View Article and Find Full Text PDF

The goal of this study is to investigate the effects of bradykinin (BR) postconditioning on cerebral ischemic injury. Transient focal cerebral ischemia was induced in rats by 60min of middle cerebral artery occlusion (MCAO), followed by 3days of reperfusion. BR as a postconditioner at a dose of 150μg/kg was applied intraperitoneally 3, 6, 24 and 48h after MCAO.

View Article and Find Full Text PDF

In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process.

View Article and Find Full Text PDF

Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000.

View Article and Find Full Text PDF

Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial.

View Article and Find Full Text PDF