Publications by authors named "Nemes P"

Detection of trace-sensitive signals is a current challenge in single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition.

View Article and Find Full Text PDF

Current developments in single-cell mass spectrometry (MS) aim to deepen proteome coverage while enhancing analytical speed to study entire cell populations, one cell at a time. Custom-built microanalytical capillary electrophoresis (μCE) played a critical role in the foundation of discovery single-cell MS proteomics. However, requirements for manual operation, substantial expertise, and low measurement throughput have so far hindered μCE-based single-cell studies on large numbers of cells.

View Article and Find Full Text PDF

Separation in single-cell mass spectrometry (MS) improves molecular coverage and quantification; however, it also elongates measurements, thus limiting analytical throughput to study large populations of cells. Here, we advance the speed of bottom-up proteomics by capillary electrophoresis (CE) high-resolution mass spectrometry (MS) for single-cell proteomics. We adjust the applied electrophoresis potential to readily control the duration of electrophoresis.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell mass spectrometry faces challenges in detecting trace-sensitive signals, but separating peptides before detection can boost the accuracy and depth of proteome analysis.
  • A new method called electrophoresis-correlative data-independent acquisition (Eco) utilizes capillary electrophoresis and electrospray ionization to enhance peptide ion detection by organizing them based on their mobility.
  • This technique significantly outperformed classical methods, leading to the identification of more proteins from minimal samples, demonstrating its potential in analyzing embryonic stem cells and understanding cell differentiation.
View Article and Find Full Text PDF

Capillary zone electrophoresis (CE) combines high separation power, scalability, and speed to limited proteome analyses by mass spectrometry (MS). However, compressed separation in CE challenges the duty cycle of tandem MS, even during data-independent acquisition (DIA). To help remedy this limitation, we introduce the concept of lectrophoresis-rrelative (Eco) data acquisition for CE-MS.

View Article and Find Full Text PDF

Unlabelled: Single-cell mass spectrometry (MS) opens a proteomic window onto the inner workings of cells. Here, we report the discovery characterization of the subcellular proteome of single, identified embryonic cells in record speed and molecular coverage. We integrated subcellular capillary microsampling, fast capillary electrophoresis (CE), high-efficiency nano-flow electrospray ionization, and orbitrap tandem MS.

View Article and Find Full Text PDF

Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been mostly limited to transcripts and a few proteins, the latter due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog (), a popular model of development, has long been known to be the origin of signals that pattern the mesoderm and central nervous system. Molecular screens of the SMO have identified several genes responsible for the ability of the SMO to establish the body axis.

View Article and Find Full Text PDF

Abundant proteins challenge deep mass spectrometry (MS) analysis of the proteome. Yolk, the source of food in many developing vertebrate embryos, complicates chemical separation and interferes with detection. We report here a strategy that enhances bottom-up proteomics in yolk-laden specimens by diluting the interferences using a yolk-depleted carrier (YODEC) proteome via isobaric multiplexing quantification.

View Article and Find Full Text PDF

During brain development, neuronal proteomes are regulated in part by changes in spontaneous and sensory-driven activity in immature neural circuits. A longstanding model for studying activity-dependent circuit refinement is the developing mouse visual system where the formation of axonal projections from the eyes to the brain is influenced by spontaneous retinal activity prior to the onset of vision and by visual experience after eye-opening. The precise proteomic changes in retinorecipient targets that occur during this developmental transition are unknown.

View Article and Find Full Text PDF

Bacterial biofilms consist of cells encased in an extracellular polymeric substance (EPS) composed of exopolysaccharides, extracellular DNA, and proteins that are critical for cell-cell adhesion and protect the cells from environmental stress, antibiotic treatments, and the host immune response. Degrading EPS components or blocking their production have emerged as promising strategies for prevention or dispersal of bacterial biofilms, but we still have little information about the specific biomolecular interactions that occur between cells and EPS components and how those interactions contribute to biofilm production. is a leading cause of nosocomial infections as a result of producing biofilms that use the exopolysaccharide poly-(1→6)-β--acetylglucosamine (PNAG) as a major structural component.

View Article and Find Full Text PDF

Over 200 genes are known to underlie human congenital hearing loss (CHL). Although transcriptomic approaches have identified candidate regulators of otic development, little is known about the abundance of their protein products. We used a multiplexed quantitative mass spectrometry-based proteomic approach to determine protein abundances over key stages of otic morphogenesis to reveal a dynamic expression of cytoskeletal, integrin signaling, and extracellular matrix proteins.

View Article and Find Full Text PDF

The epithelial-to-mesenchymal transition (EMT) and migration of cranial neural crest cells within the midbrain are critical processes that permit proper craniofacial patterning in the early embryo. Disruptions in these processes not only impair development but also lead to various diseases, underscoring the need for their detailed understanding at the molecular level. The chick embryo has served historically as an excellent model for human embryonic development, including cranial neural crest cell EMT and migration.

View Article and Find Full Text PDF

Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been limited to transcripts and some proteins due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog ( ), a popular model of development, has long been discovered to induce the patterning of the central nervous system. Molecular screens on the tissue have identified several genes, such as goosecoid, chordin, and noggin, with independent ability to establish a body axis.

View Article and Find Full Text PDF

Angiocentric gliomas (AG) in brainstem location are exceedingly rare and might cause differential diagnostic problems and uncertainty regarding the best therapeutic approach. Hereby, we describe the clinicopathological findings in a brainstem AG presenting in a toddler child and review the literature. A 2-year-old boy presented with 5 weeks history of gait disturbances, frequent falls, left-sided torticollis and swallowing problems.

View Article and Find Full Text PDF

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories.

View Article and Find Full Text PDF

Molecular composition is intricately intertwined with cellular function, and elucidation of this relationship is essential for understanding life processes and developing next-generational therapeutics. Technological innovations in capillary electrophoresis (CE) and liquid chromatography (LC) mass spectrometry (MS) provide previously unavailable insights into cellular biochemistry by allowing for the unbiased detection and quantification of molecules with high specificity. This chapter presents our validated protocols integrating ultrasensitive MS with classical tools of cell, developmental, and neurobiology to assess the biological function of important biomolecules.

View Article and Find Full Text PDF

Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles.

View Article and Find Full Text PDF

While the role of the renin-angiotensin system (RAS) in peripheral circulation is well characterized, we still lack an in-depth understanding of its role within the brain. This knowledge gap is sustained by lacking technologies for trace-level angiotensin detection throughout tissues, such as the brain. To provide a bridging solution, we enhanced capillary electrophoresis (CE) nanoflow electrospray ionization (ESI) with large-volume sample stacking and employed trapped ion mobility time-of-flight (timsTOF) tandem HRMS detection.

View Article and Find Full Text PDF

Characterization of molecular events as cells give rise to tissues and organs raises a potential to better understand normal development and design efficient remedies for diseases. Technologies enabling accurate identification and quantification of diverse types and large numbers of proteins would provide still missing information on molecular mechanisms orchestrating tissue and organism development in space and time. Here, we present a mass spectrometry-based protocol that enables the measurement of thousands of proteins in identified cell lineages in Xenopus laevis (frog) embryos.

View Article and Find Full Text PDF

Understanding the biochemistry of the cell requires measurement of all the molecules it produces. Single-cell proteomics recently became possible through advances in microanalytical sample preparation, separation by nano-flow liquid chromatography (nanoLC) and capillary electrophoresis (CE), and detection using electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). Here, we demonstrate capillary microsampling CE-ESI-HRMS to be scalable to proteomics across broad cellular dimensions.

View Article and Find Full Text PDF

Understanding of the relationship between cellular function and molecular composition holds a key to next-generation therapeutics but requires measurement of all types of molecules in cells. Developments in sequencing enabled semiroutine measurement of single-cell genomes and transcriptomes, but analytical tools are scarce for detecting diverse proteins in tissue-embedded cells. To bridge this gap for neuroscience research, we report the integration of patch-clamp electrophysiology with subcellular shot-gun proteomics by high-resolution mass spectrometry (HRMS).

View Article and Find Full Text PDF

Measurement of broad types of proteins from a small number of cells to single cells would help to better understand the nervous system but requires significant leaps in sensitivity in high-resolution mass spectrometry (HRMS). Microanalytical capillary electrophoresis electrospray ionization (CE-ESI) offers a path to ultrasensitive proteomics by integrating scalability with sensitivity. Here, we systematically evaluate performance limitations in this technology to develop a data acquisition strategy with deeper coverage of the neuroproteome from trace amounts of starting materials than traditional dynamic exclusion.

View Article and Find Full Text PDF

The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology.

View Article and Find Full Text PDF

The left-right (L-R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L-R patterning. Using single-cell high-resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal-animal blastomeres of the eight-cell Xenopus embryo.

View Article and Find Full Text PDF