Drought stress severely affects crop productivity and threatens food security. As current trends of global warming are predicted to exacerbate droughts, developing drought-resilient crops becomes urgent. Here, we used the drought-tolerant (BW35695) and drought-sensitive (BW4074) wheat varieties to investigate the physiological, biochemical, and leaf proteome responses underpinning drought tolerance.
View Article and Find Full Text PDFPlants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response.
View Article and Find Full Text PDFMalnutrition, as a result of deficiency in essential nutrients in cereal food products and consumption of a poorly balanced diet, is a major challenge facing millions of people in developing countries. However, developing maize inbred lines that are high yielding with enhanced nutritional traits for hybrid development remains a challenge. This study evaluated 40 inbred lines: 26 quality protein maize (QPM) lines, nine non-QPM lines, and five checks (three QPM lines and two non-QPM lines) in four optimum environments in Zimbabwe and South Africa.
View Article and Find Full Text PDFMaize ( L.) is the main staple cereal food crop cultivated in southern Africa. Interactions between grain yield and biochemical traits can be useful to plant breeders in making informed decisions on the traits to be considered in breeding programs for high grain yield and enhanced quality.
View Article and Find Full Text PDFWhen exposed to drought stress many plants reprogram their gene expression to activate adaptive biochemical and physiological responses for survival. However, most of the well-studied adaptive responses are common between drought-sensitive and drought-tolerant species, making it difficult to identify the key mechanisms underpinning successful drought tolerance in crops. We developed a sorghum experimental system that compares between drought-sensitive (ICSB338) and enhanced drought-tolerant (SA1441) varieties.
View Article and Find Full Text PDFDrought stress triggers remarkable physiological changes and growth impediments, which significantly diminish plant biomass and crop yield. However, certain plant species show notable resilience, maintaining nearly normal yields under severe water deficits. For example, sorghum is a naturally drought-tolerant crop, which is ideal for studying plant adaptive responses to drought.
View Article and Find Full Text PDF