Publications by authors named "Nemanja Sambaher"

Equivocal evidence indicates that high-intensity muscle contractions can affect the corticospinal responses in muscles not directly involved in the task. In the present study, the responsiveness of corticomotor pathway innervating non-dominant biceps brachii was measured in eleven healthy participants before and after: (i) two 100-s isometric unilateral knee extension maximal voluntary contractions (MVCs) on dominant leg (FATIGUE) and (ii) rest (CONTROL). Transcranial magnetic stimulation, transmastoid electrical and brachial plexus electrical stimulation were used to evoke motor evoked potential (MEP), cervicomedullary motor evoked potential (CMEP) and compound muscle action potential (Mmax) in biceps brachii muscle.

View Article and Find Full Text PDF

Exercise-induced fatigue affects muscle performance and modulates corticospinal excitability in non-exercised muscles. The purpose of this study was to investigate the effect of bilateral knee extensor fatigue on dominant elbow flexor (EF) maximal voluntary force production and corticospinal excitability. Transcranial magnetic, transmastoid electrical and brachial plexus electrical stimulation (BPES) were used to investigate corticospinal, spinal, and muscle excitability of the dominant EF before and after a bilateral knee extensor fatiguing protocol or time matched rest period (control).

View Article and Find Full Text PDF

The aim of this study was to examine the effects of an ankle compression garment (CG) on muscle performance and physiological variables associated with recovery from fatigue. Fifteen participants took part in a randomized crossover study design with 2 experimental conditions (ankle CG and control). The dependent variables skin temperature, evoked muscle contractile properties, maximal voluntary contraction (MVC) force, electromyography (EMG), drop jump performance (20, 35, and 50 cm box heights), continuous drop jump (30 cm), time to fatigue (TTF), and blood lactate concentration were measured pre- and post-warm-up and postfatigue.

View Article and Find Full Text PDF