Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes.
View Article and Find Full Text PDFHierarchical self-assembly of nanostructures with addressable complexity has been a promising route for realizing novel functional materials. Traditionally, the fabrication of such structures on a large scale has been achievable using top-down methods but with the cost of complexity of the fabrication equipment resolution and limitation mainly to 2D structures. More recently bottom-up methods using molecules like DNA have gained attention due to the advantages of low fabrication costs, high resolution and simplicity in an extension of the methods to the third dimension.
View Article and Find Full Text PDFWe investigate a model bioassay in a liquid environment using a -scanning planar Yagi-Uda antenna, focusing on the fluorescence collection enhancement of ATTO-647N dye conjugated to DNA (deoxyribonucleic acid) molecules. The antenna changes the excitation and the decay rates and, more importantly, the emission pattern of ATTO-647N, resulting in a narrow emission angle (41°) and improved collection efficiency. We efficiently detect immobilized fluorescently-labeled DNA molecules, originating from solutions with DNA concentrations down to 1 nM.
View Article and Find Full Text PDFHybrid nanostructures, in which a known number of quantum emitters are strongly coupled to a plasmonic resonator, should feature optical properties at room temperature such as few-photon nonlinearities or coherent superradiant emission. We demonstrate here that this coupling regime can only be reached with dimers of gold nanoparticles in stringent experimental conditions, when the interparticle spacing falls below 2 nm. Using a short transverse DNA double-strand, we introduce five dye molecules in the gap between two 40 nm gold particles and actively decrease its length down to sub-2 nm values by screening electrostatic repulsion between the particles at high ionic strengths.
View Article and Find Full Text PDFThe predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale.
View Article and Find Full Text PDFWe develop approaches to hold fluorescent silver clusters composed of only 10-20 atoms in nanoscale proximity, while retaining the individual structure of each cluster. This is accomplished using DNA clamp assemblies that incorporate a 10 atom silver cluster and a 15 or 16 atom silver cluster. Thermally modulated fluorescence resonance energy transfer (FRET) verifies assembly formation.
View Article and Find Full Text PDFFluorescent DNA-stabilized silver nanoclusters contain both cationic and neutral silver atoms. The absorbance spectra of compositionally pure solutions follow the trend expected for rod-shaped silver clusters, consistent with the polarized emission measured from individual nanoclusters. The data suggest a rod-like assembly of silver atoms, with silver cations mediating attachment to the bases.
View Article and Find Full Text PDF