Publications by authors named "Nemanja Djuric"

Brain-computer interfaces (BCIs) employ various paradigms which afford intuitive, augmented control for users to navigate digital technologies. In this study we explore the application of these BCI concepts to predictive text systems: commonplace interactive and assistive tools with variable usage contexts and user behaviors. We conducted an experiment to analyze user neurophysiological responses under these different usage scenarios and evaluate the feasibility of a closed-loop, adaptive BCI for use with such technologies.

View Article and Find Full Text PDF

Citations are an important, but often overlooked, part of every scientific paper. They allow the reader to trace the flow of evidence, serving as a gateway to relevant literature. Most scientists are aware of citations' errors, but few appreciate the prevalence of these problems.

View Article and Find Full Text PDF

Data-driven phenotype analyses on Electronic Health Record (EHR) data have recently drawn benefits across many areas of clinical practice, uncovering new links in the medical sciences that can potentially affect the well-being of millions of patients. In this paper, EHR data is used to discover novel relationships between diseases by studying their comorbidities (co-occurrences in patients). A novel embedding model is designed to extract knowledge from disease comorbidities by learning from a large-scale EHR database comprising more than 35 million inpatient cases spanning nearly a decade, revealing significant improvements on disease phenotyping over current computational approaches.

View Article and Find Full Text PDF

Increased availability of Electronic Health Record (EHR) data provides unique opportunities for improving the quality of health services. In this study, we couple EHRs with the advanced machine learning tools to predict three important parameters of healthcare quality. More specifically, we describe how to learn low-dimensional vector representations of patient conditions and clinical procedures in an unsupervised manner, and generate feature vectors of hospitalized patients useful for predicting their length of stay, total incurred charges, and mortality rates.

View Article and Find Full Text PDF

Background: Protein function determination is a key challenge in the post-genomic era. Experimental determination of protein functions is accurate, but time-consuming and resource-intensive. A cost-effective alternative is to use the known information about sequence, structure, and functional properties of genes and proteins to predict functions using statistical methods.

View Article and Find Full Text PDF

Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high.

View Article and Find Full Text PDF