Publications by authors named "Nema M Abdelazim"

In this work, we present a method for direct, site-selective growth of tellurium nanowires by electrochemical deposition. The Te nanowires were grown laterally between two specially designed nanoband electrodes across a gap, and over a dielectric material, forming a lateral device structure directly. The resulting wires are crystalline and phase pure, as evidenced by Raman spectroscopy, EDS (energy dispersive X-ray spectroscopy), and ADF-STEM (annular dark field scanning transmission electron microscopy).

View Article and Find Full Text PDF

Unique identification of optical devices is important for anti-counterfeiting. Physical unclonable functions (PUFs), which use random physical characteristics for authentication, are advantageous over existing optical solutions, such as holograms, due to the inherent asymmetry in their fabrication and reproduction complexity. However, whilst unique, PUFs are potentially vulnerable to replication and simulation.

View Article and Find Full Text PDF

We report a simple process for the electrodeposition of tungsten disulfide thin films from a CHCl-based electrolyte using a tailored single source precursor, [NEt][WSCl]. This new precursor incorporates the 1 : 2 W:S ratio required for formation of WS, and eliminates the need for an additional proton source in the electrolyte to remove excess sulfide. The electrochemical behaviour of [NEt][WSCl] is studied by cyclic voltammetry and electrochemical quartz crystal microbalance techniques, and the WS thin films are grown by potentiostatic electrodeposition.

View Article and Find Full Text PDF

Quantum dot physically unclonable functions (QD-PUFs) provide a promising solution to the issue of counterfeiting. When quantum dots are deposited on a surface to create a token, they form a unique pattern that is unlikely to ever be reproduced in another token that is manufactured using the same process. It would also be an extreme engineering challenge to deterministically place quantum dots to create a forgery of a specific device.

View Article and Find Full Text PDF

Nanoscale variations in the structure and composition of an object are an enticing basis for verifying its identity, due to the physical complexity of attempting to reproduce such a system. The biggest practical challenge for nanoscale authentication lies in producing a system that can be assessed with a facile measurement. Here, a system is presented in which InP/ZnS quantum dots (QDs) are randomly distributed on a surface of an aluminium-coated substrate with gold nanoparticles (Au NPs).

View Article and Find Full Text PDF

Near-to-mid-infrared photodetection technologies could be widely deployed to advance the infrastructures of surveillance, environmental monitoring, and manufacturing, if the detection devices are low-cost, in compact format, and with high performance. For such application requirements, colloidal quantum dot (QD) based photodetectors stand out as particularly promising due to the solution processability and ease of integration with silicon technologies; unfortunately, the detectivity of the QD photodetectors toward longer wavelengths has so far been low. Here we overcome this performance bottleneck through synergistic efforts between synthetic chemistry and device engineering.

View Article and Find Full Text PDF