In previous studies, we showed that ganglioside levels (GM3 being the main ganglioside) in human aortic intima isolated from atherosclerotic lesions were 5 times greater compared to intima from non-diseased vascular areas. Recently, we found that GM3 and GM3 synthase levels in differentiated in vitro macrophages were five and ten times higher, respectively, compared to freshly isolated human monocytes. In this article, we report that GM3 synthase mRNA levels were significantly higher in differentiated human monocyte-derived macrophages compared to monocytes and in atherosclerotic aorta compared to normal aorta.
View Article and Find Full Text PDFWe have previously demonstrated that amounts of ganglioside GM3 are markedly higher in human atherosclerotic lesions compared to that in non-diseased arterial tissue. Because the fatty acid composition of GM3 in blood plasma low density lipoproteins (LDL) and the fatty acid composition of GM3 in atherosclerotic lesions differed, we hypothesized that, in addition to GM3 originating from LDL infiltrating the arterial wall from the blood, excessive GM3 may be synthesized locally in atherosclerotic lesions. In the present work, using an anti-GM3 antibody developed by us, we showed that the levels of GM3 synthase in membrane fractions isolated from the atherosclerotic intima were higher compared to those in non-diseased arterial tissue.
View Article and Find Full Text PDFSialyltransferase activity has been determined in membrane preparations containing the Golgi apparatus that were isolated from atherosclerotic and normal human aortic intima as well as in plasma of patients with documented atherosclerosis and healthy donors by measuring the transfer of N-acetylneuraminic acid (NeuAc) from CMP-NeuAc to asialofetuin. The asialofetuin sialyltransferase activity was found to be 2 times higher in the atherosclerotic intima as compared to the normal intima and 2-fold higher in patients' plasma than in that from healthy donors. The mean values of the apparent Michaelis constant (K(m)) for the sialylating enzyme for both tissues did not differ and were close for the intima and plasma.
View Article and Find Full Text PDF