Publications by authors named "Nelson de Mello"

Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown.

View Article and Find Full Text PDF

Epilepsy is a brain function disorder characterized by unpredictable and recurrent seizures. The majority of patients with temporal lobe epilepsy (TLE), which is the most common type of epilepsy, have to live not only with seizures but also with behavioral alterations, including anxiety, psychosis, depression, and impaired cognitive functioning. The pilocarpine model has been recognized as an animal model of TLE.

View Article and Find Full Text PDF

The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans. It has been demonstrated in this model that the phosphorylation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR1 subunit is increased 1 h after pilocarpine treatment. Moreover, alterations in the levels of glutamate transporters have been associated with chronic epilepsy in humans.

View Article and Find Full Text PDF

The epileptogenesis may involve a variety of signaling events that culminate with synaptic reorganization. Mitogen-activated protein kinases (MAPKs) and AKT may be activated by diverse stimulus including neurotransmitter, oxidative stress, growth factors and cytokines and are involved in synaptic plasticity in the hippocampus and cerebral cortex. The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans.

View Article and Find Full Text PDF

The glucose-dependent insulinotropic peptide receptor (GIPR) has been implicated with neuroplasticity and may be related to epilepsy. GIPR expression was analyzed by immunohistochemistry in the hippocampus (HIP) and neocortex (Cx) of rats undergoing pilocarpine induced status epilepticus (Pilo-SE), and in three young male patients with left mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) treated surgically. A combined GIPR immunohistochemistry and Fluoro-Jade staining was carried out to investigate the association between the GIPR expression and neuronal degeneration induced by Pilo-SE.

View Article and Find Full Text PDF

Previous studies have shown that cognitive deficits precede the classical motor symptoms seen in Parkinson's disease (PD) and that physical exercise may exert beneficial effects on PD. We have recently verified that the monoamine-depleting drug reserpine - at doses that do not modify motor function - impairs memory processes in rats. Here, we evaluated the potential of physical exercise to improve cognitive and motor deficits induced by reserpine.

View Article and Find Full Text PDF

Muscarinic receptor agonists have been suggested as potential drugs to counteract age-related cognitive decline since critical changes in cholinergic system occur with aging. Recently, we demonstrated that single administration of the non-selective muscarinic receptor agonist pilocarpine prevents age-related spatial learning impairments in rats. In addition, increasing evidence suggests that areas in the central nervous system processing olfactory information are affected at the early stages of age-related diseases, such as Alzheimer's disease, and that specific olfactory testing may represent an important tool in the diagnosis of these diseases.

View Article and Find Full Text PDF

The cholinergic pathways are intimately involved in the learning and memory process and disruption of this system produces impairments in many learning and memory models. Converging lines of evidence support the idea that there is an age-related decline in learning and memory in animals and this decline is strikingly similar to memory changes that occur when the cholinergic system is compromised. The purpose of this work was to evaluate whether a single administration of the muscarinic receptor agonist Pilocarpine (Pilo) could prevent the age-related learning impairment in rats.

View Article and Find Full Text PDF