Objectives: Prostate inflammation is linked to lower urinary tract dysfunction and is a key factor in chronic prostatitis/chronic pelvic pain syndrome. Autoimmunity was recently identified as a driver of prostate inflammation. Agonists of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, have been used to suppress autoimmunity in mouse models of colitis, rhinitis, and dermatitis, but whether AHR agonists suppress prostate autoimmunity has not been examined.
View Article and Find Full Text PDFLower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research.
View Article and Find Full Text PDFBackground: The identity and spatial distribution of prostatic cell types has been determined in humans but not in dogs, even though aging- and prostate-related voiding disorders are common in both species and mechanistic factors, such as prostatic collagen accumulation, appear to be shared between species. In this publication we characterize the regional distribution of prostatic cell types in the young intact dog to enable comparisons with human and mice and we examine how the cellular source of procollagen 1A1 changes with age in intact male dogs.
Methods: A multichotomous decision tree involving sequential immunohistochemical stains was validated for use in dog and used to identify specific prostatic cell types and determine their distribution in the capsule, peripheral, periurethral and urethral regions of the young intact canine prostate.