Publications by authors named "Nelson Simoes"

Background: The Japanese Beetle, Newman, 1838 (Coleoptera, Rutelidae), is a univoltine agricultural pest that poses a serious threat to various agricultural crops. For more than 16 years, the Azorean official authorities have implemented a Long-Term Ecological Research (LTER) programme that is crucial for understanding the dynamics of insect pests, such as the Japanese Beetle, and their impacts on agricultural ecosystems. The significance of this long-term monitoring extends beyond understanding the pest's life cycle.

View Article and Find Full Text PDF

, commonly known as the Portuguese Man o' War, is one of the most venomous members of the Cnidaria yet is poorly understood. This article investigates the toxicity of venom by assessing its behavioral and toxicological effects on . The venom administered orally revealed dose- and time-dependent mortality, with an LD50 of 67.

View Article and Find Full Text PDF

Background: The dataset presented here is an achievement of the H2020 European project "Integrated Pest Management of the Invasive Japanese Beetle, (IPM-Popillia)". This project addresses the challenge of a new risk to plant health in Europe, the invasion of the Japanese beetle, (Newman, 1838) (Coleoptera, Rutelidae) and provides an environmentally friendly IPM Toolbox to control the expanding pest populations across Europe. This study aims to present the records of terrestrial arthropod diversity with a special focus on four groups belonging to Carabids and Staphylinid beetles (Coleoptera), Opiliones and Anisolabididae (Dermaptera), collected with the potential to be used as biocontrol agents against in future Integrated Pest Management programmes.

View Article and Find Full Text PDF

(: ), is an emerging invasive pest in Europe and America. In the Azores, this pest was first found on Terceira Island during the sixties and soon spread to other islands. The rate of infestation differs between islands, and we hypothesized that microbiome composition could play a role.

View Article and Find Full Text PDF

Entomopathogenic nematodes are used as biological control agents against a broad range of insect pests. We ascribed the pathogenicity of these organisms to the excretory/secretory products (ESP) released by the infective nematode. Our group characterized different virulence factors produced by that underlie its success as an insect pathogen.

View Article and Find Full Text PDF

Steinernema carpocapsae is an entomopathogenic nematode (EPN) that rapidly infects and kills a wide range of insect hosts and has been linked to host immunosuppression during the initial stages of infection. The lethal nature of S. carpocapsae infections has previously been credited to its symbiotic bacteria; however, it has become evident that the nematodes are able to effectively kill their hosts independently through their excretion/secretion products (ESPs).

View Article and Find Full Text PDF

Fibrinolytic enzymes with a direct mechanism of action and safer properties are currently requested for thrombolytic therapy. This paper reports on a new enzyme capable of degrading blood clots directly without impairing blood coagulation. This enzyme is also non-cytotoxic and constitutes an alternative to other thrombolytic enzymes known to cause undesired side effects.

View Article and Find Full Text PDF

Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN , and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system.

View Article and Find Full Text PDF

(Müller, 1857) plays an important role in tropical soil ecosystems and has been widely used as an animal model for a large variety of ecological studies in particular due to its common presence and generally high abundance in human-disturbed tropical soils. In this study we describe the complete mitochondrial genome of the peregrine earthworm . This is the first record of a mitochondrial genome within the Rhinodrilidae family.

View Article and Find Full Text PDF

Background: The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as "arms race", new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps.

View Article and Find Full Text PDF

The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode's genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.

View Article and Find Full Text PDF

Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem.

View Article and Find Full Text PDF

Bacillus pumilus S124A was identified as carboxymethyl cellulase producing bacteria from Azorean Bacillus collection (Lab collection), which was isolated in local soils. The bacterium was identified by 16S rRNA sequence and designated as Bacillus pumilus S124A. NCBI-blast analysis showed B.

View Article and Find Full Text PDF

Steinernemacarpocapsae is a nematode pathogenic in a wide variety of insect species. The great pathogenicity of this nematode has been ascribed to its ability to overcome the host immune response; however, little is known about the mechanisms involved in this process. The analysis of an expressed sequence tags (EST) library in the nematode during the infective phase was performed and a highly abundant contig homologous to serine protease inhibitors was identified.

View Article and Find Full Text PDF

Steinernema carpocapsae is an entomopathogenic nematode widely used for the control of insect pests due to its virulence, which is mainly attributed to the ability the parasitic stage has to overcome insect defences. To identify the mechanisms underlying such a characteristic, we studied a novel serpin-like inhibitor (sc-srp-6) that was detected in a transcriptome analysis. Recombinant Sc-SRP-6 produced in Escherichia coli had a native fold of serpins belonging to the α-1-peptidase family and exhibited inhibitory activity against trypsin and α-chymotrypsin with Ki of 0.

View Article and Find Full Text PDF

Many protease genes have previously been shown to be involved in parasitism and in the development of Steinernema carpocapsae, including a gene predicted to encode an aspartic protease, Sc-ASP110, which was cloned and was analysed in this study. A cDNA encoding Sc-ASP110 was cloned based on an expressed sequence tag (EST) fragment from our EST library. The full-length cDNA of Sc-ASP110 consists of 1112 nucleotides with a catalytic aspartic domain (aa18-337).

View Article and Find Full Text PDF

Ancient DNA (aDNA) analysis can be a useful tool in bacterial disease diagnosis in human remains. However, while the recovery of Mycobacterium spp. has been widely successful, several authors report unsuccessful results regarding ancient treponemal DNA, casting doubts on the usefulness of this technique for the diagnosis of ancient syphilis.

View Article and Find Full Text PDF

Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. These symbiotic complexes are virulent against the insect host. Many protease genes were shown previously to be induced during parasitism, including one predicted to encode an aspartic protease, which was cloned and analyzed in this study.

View Article and Find Full Text PDF

Entomopathogenic nematode Heterorhabditis bacteriophora Az29 and Az36 isolates with different virulence against Popillia unipuncta and soil survival time were isolated from the Azorean archipelago (Portugal) and used for the study. RAPD analysis revealed a very low-level of genetic diversity (GD(axenic Az36 isolate)(axenic Az29 isolate)=0.2338±0.

View Article and Find Full Text PDF

Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. During invasion, this nematode is able to express many proteases, including aspartic proteases. Genes encoding these aspartic proteases have been identified in the EST, and aspartic protease has been found in excretory-secretory products.

View Article and Find Full Text PDF

High-performance liquid chromatography-diode array detection-electrospray ionization multi-stage mass spectrometry (HPLC-DAD-ESI-MS(n)) is considered to be a very valuable tool for the characterization of compounds found in trace amounts in natural matrices, as their previous isolation and clean-up steps can be avoided. Micro-scale separation increases the potential of this analytical technique, allowing the determination of compounds in reduced samples. Spodoptera littoralis represents a major challenge to Solanaceae plants, as it is one of the most deleterious pests.

View Article and Find Full Text PDF

Steinernema carpocapsae is a parasitic nematode that is high virulent to insects. The parasitic juvenile reaches the insect haemocoelium by passing through mid-gut barriers and develops there. During invasion, the nematode was predicted to express a large set of proteases, including metalloproteases, one of which was sequenced and expressed in this work.

View Article and Find Full Text PDF
Article Synopsis
  • Steinernema carpocapsae is a nematode used for biological pest control, infecting insects through their mouth and anus, and invading their bloodstream via the midgut.
  • A serine protease, Sc-SP-1, was identified as crucial for this invasion, showing unique properties like a specific pI and catalytic efficiency, and was primarily expressed in the nematode's parasitic stage.
  • Sc-SP-1 can degrade insect midgut tissue and create holes in membranes, indicating its role in enhancing nematode virulence and opening doors for improved biological control methods.
View Article and Find Full Text PDF

Steinernema carpocapsae is an insect parasitic nematode widely used in pest control programs. The efficacy of this nematode in controlling insects has been found to be related to the pathogenicity of the infective stage. In order to study the parasitic mechanisms exhibited by this parasite, a cDNA library of the induced S.

View Article and Find Full Text PDF

Machado-Joseph disease (MJD) is a late-onset neurodegenerative disorder that presents clinical heterogeneity not completely explained by its causative mutation. MJD is caused by an expansion of a CAG tract at exon 10 of the ATXN3 gene (14q32.1), which encodes for ataxin-3.

View Article and Find Full Text PDF