The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species.
View Article and Find Full Text PDFOur understanding of human brain function can be greatly aided by studying analogous brain structures in other organisms. One brain structure with neurochemical and anatomical homology throughout vertebrate species is the locus coeruleus (LC), a small collection of norepinephrine (NE)-containing neurons in the brainstem that project throughout the central nervous system. The LC is involved in nearly every aspect of brain function, including arousal and learning, which has been extensively examined in rats and nonhuman primates using single-unit recordings.
View Article and Find Full Text PDFBrightness illusions are a powerful tool in studying vision, yet their neural correlates are poorly understood. Based on a human paradigm, we presented illusory drifting gratings to mice. Primary visual cortex (V1) neurons responded to illusory gratings, matching their direction selectivity for real gratings, and they tracked the spatial phase offset between illusory and real gratings.
View Article and Find Full Text PDFThe mind affects the body via central nervous system (CNS) control of the autonomic nervous system (ANS). In humans, one striking illustration of the "mind-body" connection is that illusions, subjectively perceived as bright, drive pupil constriction. The CNS network driving this pupil response is unknown and requires an animal model for investigation.
View Article and Find Full Text PDFThe noradrenergic locus coeruleus (LC) is a controller of brain and behavioral states. Activating LC neurons en masse by electrical or optogenetic stimulation promotes a stereotypical “activated” cortical state of high-frequency oscillations. However, it has been recently reported that spontaneous activity of LC cell pairs has sparse yet structured time-averaged cross-correlations, which is unlike the highly synchronous neuronal activity evoked by stimulation.
View Article and Find Full Text PDFWater restriction is commonly used to motivate rodents to perform behavioral tasks; however, its effects on hydration and stress hormone levels are unknown. Here, we report daily body weight and bi-weekly packed red blood cell volume and corticosterone (CORT) in adult male rats across 80 days for three commonly used water restriction schedules. We also assessed renal adaptation to water restriction using postmortem histologic evaluation of renal medulla.
View Article and Find Full Text PDFThe brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Coupling between LC spiking and the depolarizing phase of slow (1-2 Hz) waves in PFC field potentials during sleep and anesthesia suggests that LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allow interactions in the opposing (top-down) direction, but prior work has only studied prefrontal control over LC activity using electrical or optogenetic stimulation.
View Article and Find Full Text PDFThe locus coeruleus (LC) is a seemingly singular and compact neuromodulatory nucleus that is a prominent component of disparate theories of brain function due to its broad noradrenergic projections throughout the CNS. As a diffuse neuromodulatory system, noradrenaline affects learning and decision making, control of sleep and wakefulness, sensory salience including pain, and the physiology of correlated forebrain activity (ensembles and networks) and brain hemodynamic responses. However, our understanding of the LC is undergoing a dramatic shift due to the application of state-of-the-art methods that reveal a nucleus of many modules that provide targeted neuromodulation.
View Article and Find Full Text PDFDiffuse projections of locus coeruleus (LC) neurons and evidence of synchronous spiking have long been perceived as features of global neuromodulation. Recent studies demonstrated the possibility of targeted modulation by subsets of LC neurons. Non-global neuromodulation depends on target specificity and the differentiated spatiotemporal dynamics within LC.
View Article and Find Full Text PDFPsychopharmacology (Berl)
October 2015
The brain stem nucleus locus coeruleus (LC) is thought to modulate cortical excitability by norepinephrine (NE) release in LC forebrain targets. The effects of LC burst discharge, typically evoked by a strong excitatory input, on cortical ongoing activity are poorly understood. To address this question, we combined direct electrical stimulation of LC (LC-DES) with extracellular recording in LC and medial prefrontal cortex (mPFC), an important cortical target of LC.
View Article and Find Full Text PDFBackground: Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition--in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs)-has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence might be the critical age range for the negative impact of diet as an environmental insult.
View Article and Find Full Text PDFDopamine neurons of the ventral tegmental area (VTA) signal the occurrence of a reward-predicting conditioned stimulus (CS) with a subsecond duration increase in post-CS firing rate. Important theories about reward-prediction error and reward expectancy have been informed by the substantial number of studies that have examined post-CS phasic VTA neuron activity. On the other hand, the role of VTA neurons in anticipation of a reward-predicting CS and analysis of prestimulus spike rate rarely has been studied.
View Article and Find Full Text PDFPsychopharmacology (Berl)
January 2013
Rationale: Attention dysfunction is the hallmark of cognitive deficits associated with major psychiatric illnesses including schizophrenia. Cognitive deficits of schizophrenia have been attributed to reduced function of the N-methyl-D-aspartate (NMDA) receptor or reduced expression of the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase-67, which presumably leads to attenuated neurotransmission at GABA(A) receptors.
Objective: The present study used a rodent model to compare the inhibition of NMDA and GABA(A) receptors, and GAD activity on attention.
An emerging view of prefrontal cortex (PFC) function is that multiple PFC areas process information in parallel, rather than as distinct modules. Two key functions assigned to the PFC are the regulation of top-down attention and stimulus-guided action. Electrophysiology and lesion studies indicate the involvement of both the anterior cingulate cortex (ACC) and prelimbic cortex (PL) in these functions.
View Article and Find Full Text PDFThe anterior cingulate cortex (ACC) has been implicated in both preparatory attention (i.e., selecting behaviorally relevant stimuli) and in detecting errors.
View Article and Find Full Text PDF