Publications by authors named "Nelson Jumbe"

Despite the recognition of stunting as a public health priority, nutritional and nonnutritional interventions to reduce or prevent linear growth failure have demonstrated minimal impact. Investigators and policymakers face several challenges that limit their ability to assess the potential benefits of combining available interventions into a linear growth promotion package. We use two common but very different interventions, deworming and multiple micronutrient supplements, to illustrate barriers to recommending an optimal linear growth promotion package based on the currently available literature.

View Article and Find Full Text PDF

Nonlinear mixed effects models were developed to describe the relationship between cabozantinib exposure and target lesion tumor size in a phase III study of patients with progressive metastatic medullary thyroid cancer. These models used cabozantinib exposure estimates from a previously published population pharmacokinetic model for cabozantinib in cancer patients that was updated with data from healthy-volunteer studies. Semi-mechanistic models predict well for tumors with static, increasing, or decreasing growth over time, but they were not considered adequate for predicting tumor sizes in medullary thyroid cancer patients, among whom an early reduction in tumor size was followed by a late stabilization phase in those receiving cabozantinib.

View Article and Find Full Text PDF

Background And Objectives: Cabozantinib is a tyrosine kinase inhibitor approved in the USA and EU for the treatment of patients with progressive, metastatic medullary thyroid cancer (MTC). The indicated cabozantinib dose is 140 mg/day, with dose modifications allowed for patients who develop adverse events (AEs). The analysis objective was to develop a population pharmacokinetic (PopPK) model in MTC patients and to use the model for exposure-response (ER) analysis of dose modifications.

View Article and Find Full Text PDF

Purpose: We characterized the pharmacokinetics of onartuzumab (MetMAb) in animals and determined a concentration-effect relationship in tumor-bearing mice to enable estimation of clinical pharmacokinetics and target doses.

Experimental Design: A tumor growth inhibition model was used to estimate tumoristatic concentrations (TSC) in mice. Human pharmacokinetic parameters were projected from pharmacokinetics in cynomolgus monkeys by the species-invariant time method.

View Article and Find Full Text PDF

Purpose: To characterize ranibizumab pharmacokinetics in patients with AMD.

Methods: A population approach of nonlinear mixed-effect pharmacokinetic modeling based on concentration-time data from 2993 serum samples from 674 AMD patients enrolled in 5 phase 1 to 3 clinical trials of single or multiple intravitreal (ITV) doses of ranibizumab (0.3-2.

View Article and Find Full Text PDF

Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two cell types differ only in their susceptibility to infection and rate of virus production.

View Article and Find Full Text PDF

Treatment of seasonal influenza viral infections using antivirals such as neuraminidase inhibitors (NAIs) has been proven effective if administered within 48h post-infection. However, there is growing evidence that antiviral treatment of infections with avian-derived strains even as late as 6 days post-infection (dpi) can significantly reduce infection severity and duration. Using a mathematical model of in-host influenza viral infections which can capture the kinetics of both a short-lived, typical, seasonal infection and a severe infection exhibiting sustained viral titer, we explore differences in the effects of NAI treatment on both types of influenza viral infections.

View Article and Find Full Text PDF

Trastuzumab-DM1 (T-DM1) is a novel antibody-drug conjugate under investigation for the treatment of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. One challenge in oncologic drug development is determining the optimal dose and treatment schedule. A novel dose regimen-finding strategy was developed for T-DM1 using experimental data and pharmacokinetic/pharmacodynamic modeling.

View Article and Find Full Text PDF

HAE1, a high-affinity anti-IgE monoclonal antibody, is discussed here as a case study in the use of quantitative pharmacology in the development of a second-generation molecule. In vitro, preclinical, and clinical data from the first-generation molecule, omalizumab, were heavily leveraged in the HAE1 program. A preliminary mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for HAE1 was developed using an existing model for omalizumab, together with in vitro binding data for HAE1 and omalizumab.

View Article and Find Full Text PDF

Context: Some members of the Wnt family, including ligands, receptors, inhibitors, and signaling components, are expressed in human endometrium. Dickkopf-1 (Dkk-1), a potent inhibitor of the Wnt signaling pathway, was recently found to be up-regulated in decidualizing endometrial stromal cells during the secretory phase of the menstrual cycle, suggesting regulation by progesterone.

Objectives: To test the hypothesis that progesterone regulates Dkk-1 expression in human endometrial stromal cells, we investigated the following effects on stromal cell expression of Dkk-1 mRNA and protein: decidualizing stimuli (progesterone or cAMP), RU486 (an inhibitor of progesterone action), and withdrawal of progesterone.

View Article and Find Full Text PDF

The preferential use of older antimicrobial agents is, in general, sound public health policy and is meant to maintain susceptibility to newer agents. In the case of fluoroquinolones, however, this strategy is flawed and may actually hasten the spread of Streptococcus pneumoniae strains resistant to newer members of the class. In a mouse thigh infection model, we were unable to isolate clones of pneumococci resistant to the newer fluoroquinolone levofloxacin at 2 x or 4 x the baseline MIC.

View Article and Find Full Text PDF

Studies have suggested that erythropoietin (EPO) may be used to treat stroke in both animals and humans. It is thought to exert its effects directly on the brain and studies with therapeutic doses have shown that it can cross the blood-brain barrier. Here, we compared in a blinded fashion the ability of three erythropoietic agents (murine erythropoietin, human erythropoietin, and darbepoetin alfa, an analog of human erythropoietin in clinical use) to cross the blood-brain barrier of the mouse.

View Article and Find Full Text PDF

The worldwide increase in the prevalence of multi-antibiotic-resistant bacteria has threatened the physician's ability to provide appropriate therapy for infections. The relationship between antimicrobial drug concentration and infecting pathogen population reduction is of primary interest. Using data derived from mice infected with the bacterium Pseudomonas aeruginosa and treated with a fluoroquinolone antibiotic, a mathematical model was developed that described relationships between antimicrobial drug exposures and changes in drug-susceptible and -resistant bacterial subpopulations at an infection site.

View Article and Find Full Text PDF

Our objective was to assess, using clinical trial simulation, the feasibility of a fixed 200-microg dose of darbepoetin alfa (Aranesp) administered every 2 weeks in chemotherapy-induced anemia. A pharmacokinetic/pharmacodynamic model was developed using clinical data from 547 cancer patients who received darbepoetin alfa at various doses and schedules. Monte Carlo simulations were performed for weight-based (3 microg/kg every 2 weeks) and fixed-dose (200 microg every 2 weeks) regimens and were compared with observed clinical data.

View Article and Find Full Text PDF

Erythropoietin is the primary physiological regulator of erythropoiesis, and it exerts its effect by binding to cell surface receptors. It has recently been shown that both erythropoietin and its receptor are found in the human cerebral cortex, and that, in vitro, the cytokine is synthesized by astrocytes and neurons, has neuroprotective activity, and is up-regulated following hypoxic stimuli. In animal models, exogenous recombinant human erythropoietin has been reported to be beneficial in treating experimental global and focal cerebral ischemia and reducing nervous system inflammation.

View Article and Find Full Text PDF