Annu Int Conf IEEE Eng Med Biol Soc
July 2024
Diminished limb propulsive forces correlate with increased fall risk and reduced mobility. Gait biofeedback retraining, focusing on anteriorly directed ground reaction forces, holds promise for improving limb propulsive forces. However, the current reliance on bulky and expensive instrumented treadmills restricts its applicability beyond the laboratory.
View Article and Find Full Text PDFBackground: Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk.
View Article and Find Full Text PDFBackground Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk.
View Article and Find Full Text PDFBreathing plays a vital role in everyday life, and specifically during exercise it provides working muscles with the oxygen necessary for optimal performance. Respiratory inductance plethysmography (RIP) monitors breathing through elastic belts around the chest and abdomen, with efficient breathing defined by synchronous chest and abdomen movement. This study examined if providing runners with visual feedback through RIP could increase breathing efficiency and thereby time to exhaustion.
View Article and Find Full Text PDFDespite the wide-spread use of musculoskeletal simulations and its use in estimating spinal loads, much is not known about how to best collect experimental data for modelling purposes. The primary purposes in this study were to determine the effects of tracking of running motion capture data to a model (1) with and without coupling of lumbar spine segments, and (2) with varying combinations of spinal markers. Running trials were collected from 7 participants, with each at three different speeds.
View Article and Find Full Text PDF