Publications by authors named "Nelson Duraes"

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.

View Article and Find Full Text PDF

Magnetic field-assisted control of magnetite location is a promising strategy for developing flexible, electrically conductive sensors with enhanced performance and adjustable properties. This study investigates the effect of static magnetic fields applied on thermoplastic elastomer (TPE) composites with magnetite and multi-walled carbon nanotubes (MWCNT). The composites were prepared by compression moulding and the magnetic field was applied on the mould cavity during processing.

View Article and Find Full Text PDF

The fabrication of low-electrical-percolation-threshold polymer composites aims to reduce the weight fraction of the conductive nanomaterial necessary to achieve a given level of electrical resistivity of the composite. The present work aimed at preparing composites based on multiwalled carbon nanotubes (MWCNTs) and magnetite particles in a polyurethane (PU) matrix to study the effect on the electrical resistance of electrodes produced under magnetic fields. Composites with 1 wt.

View Article and Find Full Text PDF

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies.

View Article and Find Full Text PDF

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage.

View Article and Find Full Text PDF

This work proposes biodegradable textile-based structures for tissue engineering applications. We describe the use of two polymers, polybutylene succinate (PBS) proposed as a viable multifilamentand silk fibroin (SF), to produce fibre-based finely tuned porous architectures by weft knitting. PBS is here proposed as a viable extruded multifilament fibre to be processed by a textile-based technology.

View Article and Find Full Text PDF