Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. This enzyme has several analogies with agmatinase, which catalyzes the hydrolysis of agmatine into putrescine and urea. However, this contrasts with the highlighted specificity that each one presents for their respective substrate.
View Article and Find Full Text PDFUreohydrolases form a conserved family of enzymes with a strict requirement for divalent metal ions for catalytic activity. They catalyze the hydrolysis of the guanidino group and produce urea. In their active sites six highly conserved amino acid residues form a binding pocket for two catalytically essential metal ions that are needed to activate a water molecule to initiate the hydrolysis of the guanidino group in a nucleophilic attack.
View Article and Find Full Text PDFAgmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and antidepressant actions in the brain. In this context it has emerged as an important mediator of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat alcoholism and related addiction disorders.
View Article and Find Full Text PDFAgmatine (1-amino-4-guanidinobutane) plays an important role in a range of metabolic functions, in particular in the brain. Agmatinases (AGMs) are enzymes capable of converting agmatine to the polyamine putrescine and urea. AGMs belong to the family of Mn-dependent ureahydrolases.
View Article and Find Full Text PDFAgmatine, a precursor for polyamine biosynthesis, is also associated with neurotransmitter, anticonvulsant, antineurotoxic and antidepressant actions in the brain. This molecule results from the decarboxylation of L-arginine by arginine decarboxylase, and it is hydrolyzed to urea and putrescine by agmatinase. Recently, we have described a new protein that also hydrolyzes agmatine, agmatinase-like protein (ALP), which was identified through immunohistochemical analysis in the hypothalamus and hippocampus of rats.
View Article and Find Full Text PDFAgmatinase is an enzyme that catalyzes the hydrolysis of agmatine, a compound that is associated with numerous functions in the brain of mammalian organisms such as neurotransmitter, anticonvulsant, antinociceptive, anxiolytic and antidepressant-like actions. To date the only characterized agmatinases with significant enzymatic activity were extracted from bacterial organisms. These agmatinases are closely related to another ureahydrolase, arginase; both have binuclear Mn(2+) centers in their active sites.
View Article and Find Full Text PDFTo substantiate the functionality of a crystallographically evidenced allosteric site in Bacillus caldovelox arginase (Bewley et al., 1999), we have examined the kinetic consequences of the single mutations of Asp199 and Glu256, which interact with l-arginine in this site. The introduced mutations (Asp199 → Asn, Asp199 → Ala, Glu256 → Gln and Glu256 → Ala) had no effect on the hexameric structure of the enzyme (mol.
View Article and Find Full Text PDFAgmatine is a precursor for polyamine biosynthesis also associated to neurotransmitter, anticonvulsant, antineurotoxic and antidepressant actions in the brain. It results from decarboxylation of l-arginine by arginine decarboxylase and it is hydrolyzed to urea and putrescine by agmatinase. Recently, we have described a new protein which also hydrolyzes agmatine although its sequence greatly differs from all known agmatinases.
View Article and Find Full Text PDFWe recently cloned a rat brain agmatinase-like protein (ALP) whose amino acid sequence greatly differs from other agmatinases and exhibits a LIM-like domain close to its carboxyl terminus. The protein was immunohistochemically detected in the hypothalamic region and hippocampal astrocytes and neurons. We now show that truncated species, lacking the LIM-type domain, retains the dimeric structure of the wild-type protein but exhibits a 10-fold increased k(cat), a 3-fold decreased K(m) value for agmatine and altered intrinsic tryptophan fluorescent properties.
View Article and Find Full Text PDFAgmatinase catalyzes the hydrolysis of agmatine into putrescine and urea, and agmatine (decarboxylated L: -arginine) plays several roles in mammalian tissues, including neurotransmitter/neuromodulatory actions in the brain. Injection of agmatine in animals produces anticonvulsant, antineurotoxic and antidepressant-like actions. Information regarding the enzymatic aspects of agmatine metabolism in mammals, especially related to its degradation, is relatively scarce.
View Article and Find Full Text PDFThe aim of this study was to analyze the activity and expression levels of arginase I and II and to monitor the cardiovascular and hematological responses in tolerant and intolerant rats exposed to chronic intermittent hypobaric hypoxia (CIHH). Male Wistar rats (age: 3.0 +/- 0.
View Article and Find Full Text PDFContext And Objective: Epidemiological data provide useful information for clinical practice and investigations. This study aimed to determine glomerular disease frequencies in a region of Colombia and it represents the basis for future studies.
Design And Setting: Single-center retrospective analysis at the University of Antioquia, Colombia.
The functional significance of a C-terminal S-shaped motif (residues 304-322) in human arginase I was explored by examining the kinetic properties of the R308A mutant and truncated species terminating in either Arg-308 or Ala-308. Replacement of Arg-308 with alanine, with or without truncation, yielded monomeric species. All mutants were kinetically indistinguishable from the wild-type enzyme at the optimum pH of 9.
View Article and Find Full Text PDFA rat brain cDNA encoding for a novel protein with agmatinase activity was cloned and functionally expressed. The protein was expressed as a histidine-tagged fusion product with a molecular weight of about 63 kDa. Agmatine hydrolysis was strictly dependent on Mn(2+); K(m) and k(cat) values were 2.
View Article and Find Full Text PDFUpon mutation of Asn130 to aspartate, the catalytic activity of human arginase I was reduced to approximately 17% of wild-type activity, the Km value for arginine was increased approximately 9-fold, and the kcat/Km value was reduced approximately 50-fold. The kinetic properties were much less affected by replacement of Asn130 with glutamine. In contrast with the wild-type and N130Q enzymes, the N130D variant was active not only on arginine but also on its decarboxylated derivative, agmatine.
View Article and Find Full Text PDFTo examine the interaction of human arginase II (EC 3.5.3.
View Article and Find Full Text PDFThe H126N and H151N variants of Escherichia coli agmatinase (EC 3.5.3.
View Article and Find Full Text PDFUpon mutation of Asp153 by asparagine, the catalytic activity of agmatinase (agmatine ureohydrolase, EC 3.5.3.
View Article and Find Full Text PDFDiethyl pyrocarbonate (DEPC) caused a loss in the ability of inactive subunits of wild-type and H141F mutant human liver arginase (EC 3.5.3.
View Article and Find Full Text PDF