Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors.
View Article and Find Full Text PDFOptimizing drying energy in the forest products industry is critical for integrating lignocellulosic feedstocks across all manufacturing sectors. Despite substantial efforts to reduce thermal energy consumption during drying, further enhancements are possible. Cellulose, the main component of forest products, is Earth's most abundant biopolymer and a promising renewable feedstock.
View Article and Find Full Text PDFEfficient utilization of forestry, agriculture, and marine resources in various manufacturing sectors requires optimizing fiber transformation, dewatering, and drying energy consumption. These processes play a crucial role in reducing the carbon footprint and boosting sustainability within the circular bioeconomy framework. Despite efforts made in the paper industry to enhance productivity while conserving resources and energy through lower grammage and higher machine speeds, reducing thermal energy consumption during papermaking remains a significant challenge.
View Article and Find Full Text PDFThe outstanding versatility of starch offers a source of inspiration for the development of high-performance-value-added biomaterials for the biomedical field, including drug delivery, tissue engineering and diagnostic imaging. This is because starch-based materials can be tailored to specific applications via facile grafting or other chemistries, introducing specific substituents, with starch being effectively the "template" used in all the chemical transformations discussed in this review. A considerable effort has been carried out to obtain specific tailored starch-based grafted polymers, taking advantage of its biocompatibility and biodegradability with appealing sustainability considerations.
View Article and Find Full Text PDF