Publications by authors named "Nelson B Phillips"

The mutant proinsulin syndrome is a monogenic cause of diabetes mellitus due to toxic misfolding of insulin's biosynthetic precursor. Also designated (MIDY), this syndrome defines molecular determinants of foldability in the endoplasmic reticulum (ER) of β-cells. Here, we describe a peptide model of a key proinsulin folding intermediate and variants containing representative clinical mutations; the latter perturb invariant core sites in native proinsulin (Leu→Pro, Leu→Pro, and Phe→Ser).

View Article and Find Full Text PDF

Insulin-signaling requires conformational change: whereas the free hormone and its receptor each adopt autoinhibited conformations, their binding leads to structural reorganization. To test the functional coupling between insulin's "hinge opening" and receptor activation, we inserted an artificial ligand-dependent switch into the insulin molecule. Ligand-binding disrupts an internal tether designed to stabilize the hormone's native closed and inactive conformation, thereby enabling productive receptor engagement.

View Article and Find Full Text PDF

Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24).

View Article and Find Full Text PDF

Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U).

View Article and Find Full Text PDF

Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling , of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin.

View Article and Find Full Text PDF

Domain-minimized insulin receptors (IRs) have enabled crystallographic analysis of insulin-bound "micro-receptors." In such structures, the C-terminal segment of the insulin B chain inserts between conserved IR domains, unmasking an invariant receptor-binding surface that spans both insulin A and B chains. This "open" conformation not only rationalizes the inactivity of single-chain insulin (SCI) analogs (in which the A and B chains are directly linked), but also suggests that connecting (C) domains of sufficient length will bind the IR.

View Article and Find Full Text PDF

Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins.

View Article and Find Full Text PDF

A general problem is posed by analysis of transcriptional thresholds governing cell fate decisions in metazoan development. A model is provided by testis determination in therian mammals. Its key step, Sertoli cell differentiation in the embryonic gonadal ridge, is initiated by SRY, a Y-encoded architectural transcription factor.

View Article and Find Full Text PDF

Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of Tyr(B26), a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26.

View Article and Find Full Text PDF

Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding.

View Article and Find Full Text PDF

Human testis determination is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in SRY cause 46 XY gonadal dysgenesis with female somatic phenotype (Swyer syndrome) and confer a high risk of malignancy (gonadoblastoma). Such mutations cluster in the SRY high mobility group (HMG) box, a conserved motif of specific DNA binding and bending.

View Article and Find Full Text PDF

Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT).

View Article and Find Full Text PDF

Insulin provides a model for the therapeutic application of protein engineering. A paradigm in molecular pharmacology was defined by design of rapid-acting insulin analogs for the prandial control of glycemia. Such analogs, a cornerstone of current diabetes regimens, exhibit accelerated subcutaneous absorption due to more rapid disassembly of oligomeric species relative to wild-type insulin.

View Article and Find Full Text PDF

Human testis determination is initiated by SRY (sex determining region on Y chromosome). Mutations in SRY cause gonadal dysgenesis with female somatic phenotype. Two subtle variants (V60L and I90M in the high-mobility group box) define inherited alleles shared by an XY sterile daughter and fertile father.

View Article and Find Full Text PDF

The male program of therian mammals is determined by Sry, a transcription factor encoded by the Y chromosome. Specific DNA binding is mediated by a high mobility group (HMG) box. Expression of Sry in the gonadal ridge activates a Sox9-dependent gene regulatory network leading to testis formation.

View Article and Find Full Text PDF

Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size.

View Article and Find Full Text PDF

The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT.

View Article and Find Full Text PDF

Insulin is susceptible to thermal fibrillation, a misfolding process that leads to nonnative cross-β assembly analogous to pathological amyloid deposition. Pharmaceutical formulations are ordinarily protected from such degradation by sequestration of the susceptible monomer within native protein assemblies. With respect to the safety and efficacy of insulin pumps, however, this strategy imposes an intrinsic trade-off between pharmacokinetic goals (rapid absorption and clearance) and the requisite physical properties of a formulation (prolonged shelf life and stability within the reservoir).

View Article and Find Full Text PDF

Mammalian testis-determining factor SRY contains a high mobility group box, a conserved eukaryotic motif of DNA bending. Mutations in SRY cause XY gonadal dysgenesis and somatic sex reversal. Although such mutations usually arise de novo in spermatogenesis, some are inherited and so specify male development in one genetic background (the father) but not another (the daughter).

View Article and Find Full Text PDF

Bottom-up control of supramolecular protein assembly can provide a therapeutic nanobiotechnology. We demonstrate that the pharmacological properties of insulin can be enhanced by design of "zinc staples" between hexamers. Paired (i, i+4) His substitutions were introduced at an alpha-helical surface.

View Article and Find Full Text PDF

Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures.

View Article and Find Full Text PDF

Proinsulin exhibits a single structure, whereas insulin-like growth factors refold as two disulfide isomers in equilibrium. Native insulin-related growth factor (IGF)-I has canonical cystines (A6-A11, A7-B7, and A20-B19) maintained by IGF-binding proteins; IGF-swap has alternative pairing (A7-A11, A6-B7, and A20-B19) and impaired activity. Studies of mini-domain models suggest that residue B5 (His in insulin and Thr in IGFs) governs the ambiguity or uniqueness of disulfide pairing.

View Article and Find Full Text PDF

Insulin binds with high affinity to the insulin receptor (IR) and with low affinity to the type 1 insulin-like growth factor (IGF) receptor (IGFR). Such cross-binding, which reflects homologies within the insulin-IGF signaling system, is of clinical interest in relation to the association between hyperinsulinemia and colorectal cancer. Here, we employ nonstandard mutagenesis to design an insulin analog with enhanced affinity for the IR but reduced affinity for the IGFR.

View Article and Find Full Text PDF

Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length.

View Article and Find Full Text PDF

Maturity-onset diabetes of the young (MODY3), a monogenic form of type II diabetes mellitus, results most commonly from mutations in hepatocyte nuclear factor 1alpha (HNF-1alpha). Diabetes-associated mutation G20R perturbs the dimerization domain of HNF-1alpha, an intertwined four-helix bundle. In the wild-type structure G20 participates in a Schellman motif to cap an alpha-helix; its dihedral angles lie in the right side of the Ramachandran plot (alpha(L) region; phi 97 degrees).

View Article and Find Full Text PDF