Publications by authors named "Nels C Gerstner"

Voltage imaging is an important complement to traditional methods for probing cellular physiology, such as electrode-based patch clamp techniques. Unlike the related Ca imaging, voltage imaging provides a direct visualization of bioelectricity changes. We have been exploring the use of sulfonated silicon rhodamine dyes (Berkeley Red Sensor of Transmembrane potential, BeRST) for voltage imaging.

View Article and Find Full Text PDF

Voltage imaging of cardiac electrophysiology with voltage-sensitive dyes has long been a powerful complement to traditional methods like patch-clamp electrophysiology. Chemically synthesized voltage sensitive fluorophores offer flexibility for imaging in sensitive samples like human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), since they do not require genetic transformation of the sample. One serious concern for any fluorescent voltage indicator, whether chemically synthesized or genetically encoded, is phototoxicity.

View Article and Find Full Text PDF

Jogyamycin is a densely functionalized aminocyclopentitol that displays potent antiprotozoal activity. Herein, we report a route toward this natural product that utilizes an unprecedented transformation involving a tandem Ichikawa-Winstein rearrangement to install the C-1/C-2 diamine core. Attempts to further functionalize the C-3/C-4 alkene en route to jogyamycin are also discussed.

View Article and Find Full Text PDF

Pactamycin and jogyamycin are aminocyclopentitol natural products, where each core carbon bears a stereodefined alcohol or amine moiety. Their structural complexity, coupled with the diversity of functional groups coexisting in a condensed space, make them fascinating synthetic targets in their own right. Pactamycin and its derivatives bind to the 30S ribosomal subunit and display activity against parasites responsible for drug-resistant malaria and African sleeping sickness; however, efforts to develop their therapeutic potential have been hampered by their cellular toxicity.

View Article and Find Full Text PDF

Jogyamycin is a member of the aminocyclopentitol class of natural products that exhibits significant antiprotozoal activities against diseases that include African sleeping sickness and malaria. Herein, we report a route to the core of this natural product via an underutilized Ichikawa rearrangement as a key step. This route efficiently forms the cyclopentane ring from simple and easily accessible starting materials and rapidly installs the C1/C4/C5 polar functional groups.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating new methods for synthesizing complex amines, which are important in natural products and pharmaceuticals.
  • A key advancement is a selective transition-metal catalyzed nitrene transfer reaction that converts allene precursors into unique bicyclic structures called methyleneaziridines.
  • The research outlines how to efficiently transform these intermediates into various functionalized amine compounds and other valuable synthetic materials.
View Article and Find Full Text PDF

The incorporation of fluorine into organic scaffolds often improves the bioactivity of pharmaceutically relevant compounds. C-F/C-N/C-O stereotriad motifs are prevalent in antivirals, neuraminidase inhibitors, and modulators of androgen receptors, but are challenging to install. An oxidative allene amination strategy using Selectfluor rapidly delivers triply functionalized triads of the form C-F/C-N/C-O, exhibiting good scope and diastereoselectivity for all syn products.

View Article and Find Full Text PDF

A tandem allene aziridination/[4+3]/reduction sequence converts simple homoallenic sulfamates into densely functionalized aminated cycloheptenes, where the relative stereochemistry at five contiguous asymmetric centers can be controlled through the choice of the solvent and the reductant. The products resulting from this chemistry can be readily transformed into complex molecular scaffolds which contain up to seven contiguous stereocenters.

View Article and Find Full Text PDF

Oxidative allene amination provides rapid access to densely functionalized amine-containing stereotriads through highly reactive bicyclic methyleneaziridine intermediates. This strategy has been demonstrated as a viable approach for the construction of the densely functionalized aminocyclitol core of jogyamycin, a natural product with potent antiprotozoal activity. Importantly, the flexibility of oxidative allene amination will enable the syntheses of modified aminocyclitol analogues of the jogyamycin core.

View Article and Find Full Text PDF