Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene's humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity.
View Article and Find Full Text PDFThe effect of two crosslink strategies on the preparation of chitosan-based covalent hydrogels was investigated employing the widely used thiol-ene reaction. This versatile "click" chemistry can be activated either photochemically or thermochemically. Initially, well-purified chitosan (CS, DA ∼4 %, M ∼580 kg mol) was separately functionalized with vinyl (CS-ene) or thiol (CS-SH) groups in aqueous media.
View Article and Find Full Text PDFCondensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region.
View Article and Find Full Text PDFMolecular engineering of protein structures offers a uniquely versatile route for novel functionalities in materials. Here, we describe a method to form highly hydrophobic thin films using genetically engineered spider silk proteins. We used structurally engineered protein variants containing ADF3 and AQ12 spider silk sequences.
View Article and Find Full Text PDFThe combined effect of viscosity ratio, interfacial tension, and disperse phase density on the process of droplet formation during emulsification was evaluated. For that aim, emulsification by ultrasonication of oil/water systems with viscosity ratios between 1 and 600, with and without surfactant was performed. The time evolution of the average droplet size was estimated by dynamic light scattering measurements.
View Article and Find Full Text PDF