Publications by authors named "Nelly Camargo"

Malaria, caused by Plasmodium parasites, imposes a significant health burden and live-attenuated parasites are being pursued as vaccines. Here, we report on the creation of a genetically attenuated parasite by the deletion of Plasmodium LINUP, encoding a liver stage nuclear protein. In the rodent parasite Plasmodium yoelii, LINUP expression was restricted to liver stage nuclei after the onset of liver stage schizogony.

View Article and Find Full Text PDF

Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2/linup or LARC2).

View Article and Find Full Text PDF

Malaria-causing Plasmodium parasites first replicate as liver stages (LS), which then seed symptomatic blood stage (BS) infection. Emerging evidence suggests that these stages impact each other via perturbation of host responses, and this influences the outcome of natural infection. We sought to understand whether the parasite stage interplay would affect live-attenuated whole parasite vaccination, since the efficacy of whole parasite vaccines strongly correlates with their extend of development in the liver.

View Article and Find Full Text PDF

Sexual reproduction of the malaria parasites is critical for their transmission to a mosquito vector. Several signaling molecules, such as kinases and phosphatases, are known to regulate this process. We previously demonstrated that () Ca-dependent protein kinase 4 (CDPK4) and serine/arginine-rich protein kinase 1 (SRPK1) are critical for axoneme formation during male gametogenesis, with genetic deletion of either gene causing a complete block in parasite transmission to the mosquito.

View Article and Find Full Text PDF

() is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent NF54 parasite line (NF54GFP) to isolate LS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS.

View Article and Find Full Text PDF

Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p.

View Article and Find Full Text PDF

Genetically engineered live sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a (Pf) GAP with deletions in , , and genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different genes influence growth and nutrient use in various strains of malaria parasites under different media conditions.
  • In competition experiments, the lab-adapted strain 3D7 outperformed the recently isolated strain NHP4026 in human serum, while the opposite was true in AlbuMAX media.
  • By performing genetic crosses in humanized mice and analyzing allele frequency changes, researchers identified three specific genomic regions linked to growth differences in the two media types, highlighting a strong selection pressure on the parasites' growth traits.
View Article and Find Full Text PDF

Vaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP).

View Article and Find Full Text PDF
Article Synopsis
  • Sporozoites invade liver cells and develop into liver stages inside a compartment called a parasitophorous vacuole (PV), eventually producing merozoites that infect red blood cells.
  • The malaria parasite expresses a protein, ABCC2, which is crucial for the early liver stage of infection, transitioning from the sporozoite to the intrahepatocytic phase.
  • ABCC2 is present in the plasma membrane of early and mid-liver stage parasites but disappears in late stages, indicating its importance in the early replication events within the liver.
View Article and Find Full Text PDF

Following their inoculation by the bite of an infected Anopheles mosquito, the malaria parasite sporozoite forms travel from the bite site in the skin into the bloodstream, which transports them to the liver. The thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that is released from secretory organelles and relocalized on the sporozoite plasma membrane. TRAP is required for sporozoite motility and host infection, and its extracellular portion contains adhesive domains that are predicted to engage host receptors.

View Article and Find Full Text PDF
Article Synopsis
  • Whole-sporozoite vaccines have shown effectiveness in creating strong immunity against malaria in both animals and humans.
  • Gene editing techniques facilitate the creation of genetically modified malaria parasites, specifically genetically attenuated parasite (GAP) strains, that can be used for vaccination.
  • Researchers developed a new strain of the Plasmodium falciparum parasite, called P. falciparum mei2-, which can grow in human liver models but fails to develop into infectious forms, making it a promising candidate for malaria vaccines.
View Article and Find Full Text PDF

Within the liver, sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1.

View Article and Find Full Text PDF
Article Synopsis
  • The development of liver-humanized mouse models allows researchers to study the preerythrocytic stages of malaria, a significant advancement compared to the limited existing models for blood stage infection.
  • Current methods involve injecting human red blood cells (hRBCs) to study malaria in small animals, but these treatments do not replicate the natural infection process that occurs via mosquito bites.
  • The newly established FRGN KO mouse model, which incorporates human hepatocytes and allows for both liver and blood stage infection studies, demonstrates promise in testing therapeutic interventions like monoclonal antibodies against specific parasite proteins.
View Article and Find Full Text PDF

Malaria eradication necessitates new tools to fight the evolving and complex Plasmodium pathogens. These tools include prophylactic drugs that eliminate Plasmodium liver stages and consequently prevent clinical disease, decrease transmission, and reduce the propensity for resistance development. Currently, the identification of these drugs relies on in vitro P.

View Article and Find Full Text PDF

Gliding motility and cell traversal by the Plasmodium ookinete and sporozoite invasive stages allow penetration of cellular barriers to establish infection of the mosquito vector and mammalian host, respectively. Motility and traversal are not observed in red cell infectious merozoites, and we have previously classified genes that are expressed in sporozoites but not merozoites (S genes) in order to identify proteins involved in these processes. The S4 gene has been described as criticaly involved in Cell Traversal for Ookinetes and Sporozoites (CelTOS), yet knockout parasites (s4/celtos¯) do not generate robust salivary gland sporozoite numbers, precluding a thorough analysis of S4/CelTOS function during host infection.

View Article and Find Full Text PDF

Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium vivax malaria causes symptoms that can come back periodically due to dormant liver parasites (hypnozoites) activating.
  • Researchers created a model using human liver-chimeric FRG KO mice to study how P. vivax infects the liver, develops, and forms dormant stages.
  • The study showed that the antimalarial drug primaquine can prevent and treat these liver infections, indicating that this mouse model could help discover new treatments for relapsing malaria.
View Article and Find Full Text PDF

Background: The development of drugs and vaccines to reduce malaria transmission is an important part of eradication plans. The transmission-reducing activity (TRA) of these agents is currently determined in the standard membrane-feeding assay (SMFA), based on subjective microscopy-based readouts and with limitations in upscaling and throughput.

Methods: Using a Plasmodium falciparum strain expressing the firefly luciferase protein, we present a luminescence-based approach to SMFA evaluation that eliminates the requirement for mosquito dissections in favor of a simple approach in which whole mosquitoes are homogenized and examined directly for luciferase activity.

View Article and Find Full Text PDF

Immunization with live-attenuated Plasmodium sporozoites completely protects against malaria infection. Genetic engineering offers a versatile platform to create live-attenuated sporozoite vaccine candidates. We previously generated a genetically attenuated parasite (GAP) by deleting the P52 and P36 genes in the NF54 wild-type (WT) strain of Plasmodium falciparum (Pf p52(-)/p36(-) GAP).

View Article and Find Full Text PDF

The prodigious rate at which malaria parasites proliferate during asexual blood-stage replication, midgut sporozoite production, and intrahepatic development creates a substantial requirement for essential nutrients, including fatty acids that likely are necessary for parasite membrane formation. Plasmodium parasites obtain fatty acids either by scavenging from the vertebrate host and mosquito vector or by producing fatty acids de novo via the type two fatty acid biosynthesis pathway (FAS-II). Here, we study the FAS-II pathway in Plasmodium falciparum, the species responsible for the most lethal form of human malaria.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium falciparum, the malaria parasite, relies on glucose during its blood-stage development, but the role of glycolysis in contributing to acetyl-CoA for metabolism and fatty acid production is unclear.
  • Research reveals that the pyruvate dehydrogenase (PDH) complex, located in a specialized organelle called the apicoplast, does not significantly contribute to acetyl-CoA synthesis during this stage.
  • Instead, a "PDH-like" enzyme and acetyl-CoA synthetase play crucial roles in supplying acetyl-CoA, with the PDH-like pathway contributing to the TCA cycle in a consistent manner across life stages, while PDH-deficient parasites struggle at the mosquito stage
View Article and Find Full Text PDF

Plasmodium parasites infect the liver and replicate inside hepatocytes before they invade erythrocytes and trigger clinical malaria. Analysis of host signaling pathways affected by liver-stage infection could provide critical insights into host-pathogen interactions and reveal targets for intervention. Using protein lysate microarrays, we found that Plasmodium yoelii rodent malaria parasites perturb hepatocyte regulatory pathways involved in cell survival, proliferation, and autophagy.

View Article and Find Full Text PDF

Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.

View Article and Find Full Text PDF

Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P.

View Article and Find Full Text PDF