Publications by authors named "Nellore Bhanu Chandar"

Although the three-dimensional structures of mouse and Torpedo californica acetylcholinesterase are very similar, their responses to the covalent sulfonylating agents benzenesulfonyl fluoride and phenylmethylsulfonyl fluoride are qualitatively different. Both agents inhibit the mouse enzyme effectively by covalent modification of its active-site serine. In contrast, whereas the Torpedo enzyme is effectively inhibited by benzenesulfonyl fluoride, it is almost completely resistant to phenylmethylsulfonyl fluoride.

View Article and Find Full Text PDF

Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings.

View Article and Find Full Text PDF

A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods.

View Article and Find Full Text PDF

Organophosphorus compound (OP) tabun is resistant to reactivate by many oxime drugs after the formation of OP-conjugate with AChE. The reactivation of tabun-inhibited mAChE and site-directed mutants by bispyridinium oxime, K048 (N-[4-(4-hydroxyiminomethylpyridinio)butyl]-4-carbamoylpyridinium dibromide) showed that the mutations significantly poor the overall reactivation efficacy of K048. We have unravelled the lowered efficacy of K048 with the tabun-mutant mAChE(Y337A) using docking and steered molecular dynamics (SMD) simulations.

View Article and Find Full Text PDF

Dimethyl(pyridin-2-yl)sulfonium based oxime has been designed to reverse the aging process of organophosphorus inhibited AChE and to reactivate the aged-AChE adduct. We have employed DFT M05-2X/6-31G(∗) level of theory in aqueous phase with polarizable continuum solvation model (PCM) for the methylation of phosphonate ester monoanion of the soman-aged adduct. The calculated free energy of activation for the methyl transfer process from designed dimethyl(phenyl)sulfonium (1) to aged AChE-OP adduct occurs with a barrier of 31.

View Article and Find Full Text PDF

We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study.

View Article and Find Full Text PDF

Complexes synthesized from Zn(II), Cu(II), and Cd(II), using a dipicolyl amine derivative (L), showed unique specificity toward pyrophosphate ion (PPi or P4O7(4-)) among all other common anionic analytes, including different biologically significant phosphate ion (PO4(3-), H2PO4(2-)) or phosphate-ion-based nucleotides, such as AMP, ADP, ATP, and CTP. However, the relative affinities of PPi toward these three metal complexes were found to vary and follow the order K(a)(L.Zn-PPi) > are given in units of (a)(L.

View Article and Find Full Text PDF

We have examined the aging process of soman inhibited AChE using Density functional theory (DFT) calculations. The catalytic serine of AChE can be phosphonylated by the nerve agent soman, and subsequently can undergo an aging process. The consequences of irreversible inhibition of AChE due to the aging process is fatal for mammals.

View Article and Find Full Text PDF

In this work, we have rationally designed and synthesized two new reagents (L(1) and L(2)), each bearing a pendant aldehyde functionality. This aldehyde group can take part in cyclization reactions with β- or γ-amino thiols to yield the corresponding thiazolidine and thiazinane derivatives, respectively. The intramolecular charge-transfer (ICT) bands of these thiazolidine and thiazinane derivatives are distinctly different from those of the molecular probes (L(1) and L(2)).

View Article and Find Full Text PDF