Control over the molecular organization of π-conjugated oligothiophenes into different types of supramolecular assemblies is key to their use in organic electronics but difficult to achieve as these chromophores have a pronounced tendency to aggregate. Herein we show that oligoprolines, which do not self-assemble on their own, control the self-assembly of quaterthiophenes. Spectroscopic, microscopic, and diffraction studies with quaterthiophene-oligoproline conjugates revealed the formation of mono- or double-layered sheets or, alternatively, helically twisted ribbons - depending on the length of the oligoproline.
View Article and Find Full Text PDFOrdering π-systems into defined supramolecular structures is important for the development of organic functional materials. In recent years, peptides with defined secondary structures and/or self-assembly properties were introduced as powerful tools to order peptide-chromophore conjugates into different morphologies. This work explores whether or not the directionality of peptides can be used to control the self-assembly.
View Article and Find Full Text PDFDespite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist-these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads.
View Article and Find Full Text PDF