Maintenance of intracellular proteostasis is essential for neuronal function, and emerging data support the view that disturbed proteostasis plays an important role in brain aging and the pathogenesis of age-related neurodegenerative disorders such as Alzheimer's disease (AD). sAPPalpha (sAPPα), the extracellularly secreted N-terminal alpha secretase cleavage product of the amyloid precursor protein (APP), has an established function in neuroprotection. Recently, we provided evidence that membrane-bound holo-APP functionally cooperates with sAPPα to mediate neuroprotection via activation of the Akt survival signaling pathway and sAPPα directly affects proteostasis.
View Article and Find Full Text PDFThe oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is overactivated in malignant glioma and plays a key role in promoting cell survival, thereby increasing the acquired apoptosis resistance of these tumors. Here we investigated the STAT3/myeloid cell leukemia 1 (MCL1) signaling pathway as a target to overcome the resistance of glioma cells to the Bcl-2-inhibiting synthetic BH3 mimetic ABT-737. Stable lentiviral knockdown of MCL1 sensitized LN229 and U87 glioma cells to apoptotic cell death induced by single-agent treatment with ABT-737 which was associated with an early activation of DEVDase activity, cytochrome c release, and nuclear apoptosis.
View Article and Find Full Text PDF