Publications by authors named "Nelleke C van Wouwe"

Deep brain stimulation of the subthalamic nucleus is an effective treatment for the clinical motor symptoms of Parkinson's disease, but may alter the ability to learn contingencies between stimuli, actions and outcomes. We investigated how stimulation of the functional subregions in the subthalamic nucleus (motor and cognitive regions) modulates stimulus-action-outcome learning in Parkinson's disease patients. Twelve Parkinson's disease patients with deep brain stimulation of the subthalamic nucleus completed a probabilistic stimulus-action-outcome task while undergoing ventral and dorsal subthalamic nucleus stimulation (within subjects, order counterbalanced).

View Article and Find Full Text PDF

Background: Impulsivity is a common clinical feature of Huntington disease (HD), but the underlying cognitive dynamics of impulse control in this population have not been well-studied.

Objective: To investigate the temporal dynamics of action impulse control in HD patients using an inhibitory action control task.

Methods: Sixteen motor manifest HD patients and seventeen age-matched healthy controls (HC) completed the action control task.

View Article and Find Full Text PDF

Objective: Deep brain stimulation (DBS) is an effective treatment to improve motor symptoms in Parkinson's disease (PD). The Globus Pallidus (GPi) and the Subthalamic Nucleus (STN) are the most targeted brain regions for stimulation and produce similar improvements in PD motor symptoms. However, our understanding of stimulation effects across targets on inhibitory action control processes is limited.

View Article and Find Full Text PDF

Eye tracking and other behavioral measurements collected from patient-participants in their hospital rooms afford a unique opportunity to study natural behavior for basic and clinical translational research. We describe an immersive social and behavioral paradigm implemented in patients undergoing evaluation for surgical treatment of epilepsy, with electrodes implanted in the brain to determine the source of their seizures. Our studies entail collecting eye tracking with other behavioral and psychophysiological measurements from patient-participants during unscripted behavior, including social interactions with clinical staff, friends, and family in the hospital room.

View Article and Find Full Text PDF

Essential tremor (ET) is a movement disorder characterized primarily by action tremor which affects the regulation of movements. Disruptions in cerebello-thalamocortical networks could interfere with cognitive control over actions in ET, for example, the ability to suppress a strong automatic impulse over a more appropriate action (conflict control). The current study investigated whether ET impacts conflict control proficiency.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) for Parkinson disease provides significant improvement of motor symptoms but can also produce neurocognitive side effects. A decline in verbal fluency (VF) is among the most frequently reported side effects. Preoperative factors that could predict VF decline have yet to be identified.

View Article and Find Full Text PDF

Objective: Deep brain stimulation (DBS) improves motor symptoms in Parkinson's disease (PD), but it can also disrupt verbal fluency with significant costs to quality of life. The current study investigated how variability of bilateral active electrode coordinates along the superior/inferior, anterior/posterior, and lateral/medial axes in the subthalamic nucleus (STN) or the globus pallidus interna (GPi) contribute to changes in verbal fluency. We predicted that electrode location in the left hemisphere would be linked to changes in fluency, especially in the STN.

View Article and Find Full Text PDF

Findings from previous research using the classic stop-signal task indicate that the subthalamic nucleus (STN) plays an important role in the ability to inhibit motor actions. Here we extend these findings using a stop-change task that requires voluntary action override to stop an ongoing motor response and change to an alternative response. Sixteen patients diagnosed with Parkinson's disease (PD) and 16 healthy control participants (HC) performed the stop-change task.

View Article and Find Full Text PDF

Patients with Parkinson's disease (PD) often experience reductions in the proficiency to inhibit actions. The motor symptoms of PD can be effectively treated with deep brain stimulation (DBS) of the subthalamic nucleus (STN), a key structure in the frontal-striatal network that may be directly involved in regulating inhibitory control. However, the precise role of the STN in stopping control is unclear.

View Article and Find Full Text PDF

Football is played in a dynamic, often unpredictable, visual environment in which players are challenged to process and respond with speed and flexibility to critical incoming stimulus events. To meet this challenge, we hypothesize that football players possess, in conjunction with their extraordinary physical skills, exceptionally proficient executive cognitive control systems that optimize response execution. It is particularly important for these systems to be proficient at coordinating directional reaction and counter-reaction decisions to the very rapid lateral movements routinely made by their opponents during a game.

View Article and Find Full Text PDF

Objective: Despite being a major cause of neurological disability, the neural mechanisms of functional movement disorders (FMDs) remain poorly understood. Recent studies suggest that FMD is linked to dysfunctional motor and prefrontal regions that could lead to motor and cognitive impairments. The aim of this study was to investigate different components of action control in FMD by using choice-reaction, stop-signal, and Simon tasks.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by dysfunction in frontal cortical and striatal networks that regulate action control. We investigated the pharmacological effect of dopamine agonist replacement therapy on frontal cortical activity and motor inhibition. Using Arterial Spin Labeling MRI, we examined 26 PD patients in the off- and on-dopamine agonist medication states to assess the effect of dopamine agonists on frontal cortical regional cerebral blood flow.

View Article and Find Full Text PDF

Objectives: Essential tremor (ET) is a movement disorder characterized by action tremor which impacts motor execution. Given the disrupted cerebellar-thalamo-cortical networks in ET, we hypothesized that ET could interfere with the control mechanisms involved in regulating motor performance. The ability to inhibit or stop actions is critical for navigating many daily life situations such as driving or social interactions.

View Article and Find Full Text PDF

American football is played in a dynamic environment that places considerable demands on a player's ability to make fast, precise reactions while controlling premature, impulsive reactions to spatial misinformation. We investigated the hypothesis that collegiate football players are more proficient than their non-athlete counterparts at controlling impulsive motor actions. National Collegiate Athletic Association (NCAA) Division I football players ( = 280) and non-athlete controls ( = 32) completed a variant of the Simon conflict task, which quantifies choice reaction speed and the proficiency of controlling spatially driven response impulses.

View Article and Find Full Text PDF

Background: Dopamine therapy in Parkinson disease (PD) can have differential effects on inhibitory action control, or the ability to inhibit reflexive or impulsive actions. Dopamine agonist (DAAg) medications, which preferentially target D2 and D3 receptors, can either improve or worsen control of impulsive actions in patients with PD. We have reported that the direction of this effect depends on baseline levels of performance on inhibitory control tasks.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D receptor binding in both striatal and extrastriatal regions in PD are limited.

View Article and Find Full Text PDF

The nigrostriatal and mesocorticolimbic dopamine networks regulate reward-driven behavior. Regional alterations to mesolimbic dopamine D receptor expression are described in drug-seeking and addiction disorders. Parkinson's disease (PD) patients are frequently prescribed D-like dopamine agonist (DAgonist) therapy for motor symptoms, yet a proportion develop clinically significant behavioral addictions characterized by impulsive and compulsive behaviors (ICBs).

View Article and Find Full Text PDF

American football is played in a chaotic visual environment filled with relevant and distracting information. We investigated the hypothesis that collegiate football players show exceptional skill at shielding their response execution from the interfering effects of distraction (). The performances of 280 football players from National Collegiate Athletic Association Division I football programs were compared to age-matched controls in a variant of the Eriksen flanker task (Eriksen and Eriksen, 1974).

View Article and Find Full Text PDF

The present behavioral study delineates the impact of Parkinson's disease (PD) and of dopaminergic medication on action control over voluntary behavior. Previous studies reported either prolonged responding or stopping latencies in PD compared to healthy controls (HC). Few studies investigated the effects of dopaminergic medication on these processes concurrently.

View Article and Find Full Text PDF

Objectives: We investigated how broad motivational tendencies are related to the expression and suppression of action impulses in Parkinson's disease (PD).

Methods: Sixty-nine participants with PD completed a Simon response conflict task and Behavioral Inhibition System (BIS) and Behavioral Activation System (BAS) scales based on Gray's (1987) reinforcement sensitivity theory. Analyses determined relationships between BIS, BAS, and the susceptibility to making impulsive action errors and the proficiency of inhibiting interference from action impulses.

View Article and Find Full Text PDF

We administered a stop-change paradigm, an extended version of the stop task that requires (a) stopping an ongoing motor response and (b) changing to an alternative (change) response. Performance of a group of patients diagnosed with Parkinson's disease (PD) and taking dopaminergic medication was compared with that of matched healthy control (HC) participants. Behavioral results indicated that response latencies to the initial go signal did not distinguish between the 2 groups, but that stopping latencies were prolonged in PD patients.

View Article and Find Full Text PDF

Background: PD patients treated with dopamine therapy can develop maladaptive impulsive and compulsive behaviors, manifesting as repetitive participation in reward-driven activities. This behavioral phenotype implicates aberrant mesocorticolimbic network function, a concept supported by past literature. However, no study has investigated the acute hemodynamic response to dopamine agonists in this subpopulation.

View Article and Find Full Text PDF

Learning the contingencies between stimulus, action, and outcomes is disrupted in disorders associated with altered dopamine (DA) function in the BG, such as Parkinson disease (PD). Although the role of DA in learning to act has been extensively investigated in PD, the role of DA in "learning to withhold" (or inhibit) action to influence outcomes is not as well understood. The current study investigated the role of DA in learning to act or to withhold action to receive rewarding, or avoid punishing outcomes, in patients with PD tested "off" and "on" dopaminergic medication (n = 19) versus healthy controls (n = 30).

View Article and Find Full Text PDF

Evidence that Tourette's syndrome (TS) disrupts inhibitory motor control is highly mixed. The authors investigated inhibitory control of manual and vocal actions in young adults with relatively uncomplicated, persistent TS. Both TS and control groups showed similar response latencies when executing manual and vocal reactions, but individuals with TS were slower at stopping their manual and vocal responses.

View Article and Find Full Text PDF

Dopamine plays a key role in a range of action control processes. Here, we investigate how dopamine depletion caused by Parkinson disease (PD) and how dopamine restoring medication modulate the expression and suppression of unintended action impulses. Fifty-five PD patients and 56 healthy controls (HCs) performed an action control task (Simon task).

View Article and Find Full Text PDF