Publications by authors named "Nell B Cant"

Projections to the inferior colliculus (IC) from the lateral and medial superior olivary nuclei (LSO and MSO) were studied in the gerbil (Meriones unguiculatus) with neuroanatomical tract-tracing methods. The terminal fields of projecting axons were labeled via anterograde transport of biotinylated dextran amine (BDA) and were localized on series of horizontal sections through the IC. In addition, to make the results easier to visualize in three dimensions and to facilitate comparisons among cases, the data were also reconstructed into the transverse plane.

View Article and Find Full Text PDF

The spatial organization of projections from the ventral cochlear nucleus (VCN) to the ventral nucleus of the lateral lemniscus (VNLL) and from the VNLL to the central nucleus of the inferior colliculus (CNIC) was investigated by using neuroanatomical tracing methods in the gerbil. In order to label cells in the VNLL that project to the CNIC, focal injections of biotinylated dextran amine (BDA) were made into different CNIC regions. Retrogradely labeled cells were distributed throughout the dorsal-to-ventral axis of the VNLL in all cases.

View Article and Find Full Text PDF

We describe here a molecular genetic approach for imaging synaptic inhibition. The thy-1 promoter was used to express high levels of Clomeleon, a ratiometric fluorescent indicator for chloride ions, in discrete populations of neurons in the brains of transgenic mice. Clomeleon was functional after chronic expression and provided non-invasive readouts of intracellular chloride concentration ([Cl(-)](i)) in brain slices, allowing us to quantify age-dependent declines in resting [Cl(-)](i) during neuronal development.

View Article and Find Full Text PDF

The ventral division of the medial geniculate nucleus (MGv) receives almost all of its ascending input from the ipsilateral central nucleus of the inferior colliculus (CNIC). In a previous study (Cant and Benson [2006] J. Comp.

View Article and Find Full Text PDF

The inferior colliculus (IC) receives its major ascending input from the cochlear nuclei, the superior olivary complex, and the nuclei of the lateral lemniscus. To understand better the terminal distribution of the inputs from these sources relative to one another, we made focal injections of a retrograde tracer, biotinylated dextran amine, in different parts of the IC in 74 gerbils (Meriones unguiculatus). The cases could be divided into three groups based on counts of labeled cells in brainstem auditory nuclei.

View Article and Find Full Text PDF

The cochlear nucleus is made up of a number of diverse cell types with different anatomical and physiological properties. A plant lectin, Wisteria floribunda agglutinin, that recognizes specific carbohydrate residues in the extracellular matrix binds to some cell types in the ventral cochlear nucleus but not to cells in the dorsal cochlear nucleus. In the ventral cochlear nucleus, the most intensely labeled cells are octopus cells, a subset of multipolar cells and cochlear root neurons.

View Article and Find Full Text PDF

An atlas of the inferior colliculus of the gerbil is presented in three dimensions. Sections were cut in the transverse (coronal), horizontal or saggital planes and fit to a common cartesian coordinate grid. The sections used for the atlas were reacted for cytochrome oxidase activity, a functional marker that can be used to distinguish different areas in the brainstem.

View Article and Find Full Text PDF

The cochlear nuclear complex gives rise to widespread projections to nuclei throughout the brainstem. The projections arise from separate, well-defined populations of cells. None of the cell populations in the cochlear nucleus projects to all brainstem targets, and none of the targets receives inputs from all cell types.

View Article and Find Full Text PDF

Conductive hearing loss (CHL) restricts auditory input to an intact peripheral auditory system. Effects of deprivation on the central auditory system (CAS) have been debated, although a number of studies support the hypothesis that CHL can cause modification of CAS structure and function. The present study was designed to test the hypothesis that unilateral CHL results in a decrease in cytochrome oxidase (CO) activity in CAS nuclei that receive major afferent input from the affected ear.

View Article and Find Full Text PDF