The prolyl hydroxylase domain-containing enzymes (PHDs) are important metabolic sensors of the cell and its environment, which might be employed to alert cells of the immune system. These enzymes regulate the expression of the hypoxia inducible factor (HIF) isoforms and NF-κB, crucial transcription factors controlling cellular metabolism and inflammation. PHD/HIF signaling is activated in the allergic lung and is proposed as a potential druggable pathway.
View Article and Find Full Text PDFThe IRE1-XBP1 signalling pathway is part of a cellular programme that protects against endoplasmic reticulum (ER) stress, but also controls development and survival of immune cells. Loss of XBP1 in splenic type 1 conventional dendritic cells (cDC1s) results in functional alterations without affecting cell survival. However, in mucosal cDC1s, loss of XBP1 impaired survival in a tissue-specific manner-while lung cDC1s die, intestinal cDC1s survive.
View Article and Find Full Text PDFSearching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells.
View Article and Find Full Text PDFDuring the past decade, cell death researchers have witnessed a gradual but deep conceptual revolution: it has been unequivocally shown that necrosis, which for long had been considered as a purely accidental cell death mode, can also be induced by finely regulated signal transduction pathways. In particular, when caspases are inhibited by pharmacological or genetic means, the ligation of death receptors such as the tumor necrosis factor receptor 1 (TNFR1) can lead to the assembly of a supramolecular complex containing the receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) that delivers a pronecrotic signal. Such complex has recently been dubbed necrosome and mediates the execution of a specific instance of regulated necrosis, necroptosis.
View Article and Find Full Text PDFNecrotic cell death has long been considered an accidental and uncontrolled mode of cell death. But recently it has become clear that necrosis is a molecularly regulated event that is associated with pathologies such as ischemia-reperfusion (IR) injury, neurodegeneration and pathogen infection. The serine/threonine kinase receptor-interacting protein 1 (RIP1) plays a crucial role during the initiation of necrosis induced by ligand-receptor interactions.
View Article and Find Full Text PDF