Synthetic scaffolds that permit spatial and temporal organization of enzymes in living cells are a promising post-translational strategy for controlling the flow of information in both metabolic and signaling pathways. Here, we describe the use of plasmid DNA as a stable, robust and configurable scaffold for arranging biosynthetic enzymes in the cytoplasm of Escherichia coli. This involved conversion of individual enzymes into custom DNA-binding proteins by genetic fusion to zinc-finger domains that specifically bind unique DNA sequences.
View Article and Find Full Text PDFThe temperature-induced budding of POPC-cardiolipin-cholesterol, POPC-POPS-cholesterol and POPC-POPG-cholesterol giant lipid vesicles in the presence of beta 2-glycoprotein I (beta 2-GPI) in the outer solution was studied experimentally and theoretically. The observed budding transition of vesicles was continuous which can be explained by taking into account the orientational ordering and direct interactions between oriented lipids. The attachment of positively charged beta 2-GPI to the negatively charged outer surface of POPC-cardiolipin-cholesterol, POPC-POPS-cholesterol and POPC-POPG-cholesterol giant vesicles caused coalescence of the spheroidal membrane bud with the parent vesicle before the bud could detach from the parent vesicle, i.
View Article and Find Full Text PDFInteractions between phospholipid membranes (made of palmitoyloleoylphosphatidylcholine, cardiolipin and cholesterol) after addition of beta2 glycoprotein I (beta2GPI) or anti-beta2GPI antibodies or a mixture of both were studied by observing giant phospholipid vesicles under the phase contrast microscope. Both, negatively charged and neutral vesicles coalesced into complexes and adhered to the bottom of the observation chamber in the presence of beta2GPI in solution. Anti-beta2GPIs alone or previously mixed with beta2GPI caused coalescence of charged but not neutral vesicles, i.
View Article and Find Full Text PDFAntiphospholipid syndrome is characterized with thrombotic events and/or pregnancy morbidity and antiphospholipid antibodies (aPL). The most common antigen for aPL is beta2-glycoprotein-I (beta(2)GPI), a plasma protein binding to negatively charged phospholipids. The influence of aPL on coagulation is not well understood.
View Article and Find Full Text PDF