Publications by authors named "Nejadhashemi A"

Article Synopsis
  • - The COVID-19 pandemic emphasized the importance of using quantitative microbial risk assessment (QMRA) for enhancing public health protection through modeling infectious disease risks.
  • - A recent workshop gathered 41 QMRA experts to outline crucial research priorities such as improving methods, harmonizing environmental monitoring, and integrating different scientific approaches.
  • - Key recommendations include building a collaborative research community, enhancing data collection efforts, and ensuring sustainable funding to support the advancement of QMRA for global health policies.
View Article and Find Full Text PDF

The monitoring of Per and Polyfluoroalkyl substances (PFAS) in drinking water sources has significantly increased due to their recognition as a major public health concern. This information has been utilized to assess the importance of potential explanatory variables in determining the presence and concentration of PFAS in different regions. Nevertheless, the significance of these variables and the reliability of the methods in regions beyond where they were initially tested is still uncertain.

View Article and Find Full Text PDF

Developing strategic plans for the remediation and mitigation of pre- and polyfluoroalkyl substances (PFAS) in soil, groundwater, and surface water requires an understanding of the fate and transport of these chemicals on a regional scale. To fill this knowledge gap, we developed a distributed hydrogeochemical model and applied it to a large-scale watershed with various point and non-point sources of a long-chain, highly persistent PFAS compound known as perfluorooctane sulfonic acid (PFOS). The results showed that the developed model could reproduce the spatiotemporal concentration of PFOS across a large and diverse watershed.

View Article and Find Full Text PDF

As non-point sources of pollution begin to overtake point sources in watersheds, source identification and complicating variables such as rainfall are growing in importance. Microbial source tracking (MST) allows for identification of fecal contamination sources in watersheds; when combined with data on land use and co-occuring variables (e.g.

View Article and Find Full Text PDF

When rainwater harvesting is utilized as an alternative water resource in buildings, a combination of municipal water and rainwater is typically required to meet water demands. Altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. Still, it is unknown if similar reactions occur within building plumbing following a transition in source water quality.

View Article and Find Full Text PDF

Several factors can affect virus behavior and persistence in water sources. Historically linear models have been used to describe persistence over time; however, these models do not consider all of the factors that can affect inactivation kinetics or the observed patterns of decay. Meanwhile, applying the appropriate persistence model is critical for ensuring that decision makers are minimizing human health risk in the event of contamination and exposure to contaminated groundwater.

View Article and Find Full Text PDF

Livestock productions require significant resources allocation in the form of land, water, energy, air, and capital. Meanwhile, owing to increase in the global demand for livestock products, it is wise to consider sustainable livestock practices. In the past few decades, footprints have emerged as indicators for sustainability assessment.

View Article and Find Full Text PDF

Agricultural nonpoint source pollution is the leading source of water quality degradation in United States, which has led to the development of programs that aim to mitigate this pollution. One common approach to mitigating nonpoint source pollution is the use of best management practices (BMPs). However, it can be challenging to evaluate the effectiveness of implemented BMPs due to polices that limit data sharing.

View Article and Find Full Text PDF

Residential plumbing is critical for the health and safety of populations worldwide. A case study was conducted to understand fixture water use, drinking water quality and their possible link, in a newly plumbed residential green building. Water use and water quality were monitored at four in-building locations from September 2015 through December 2015.

View Article and Find Full Text PDF

Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal.

View Article and Find Full Text PDF

Droughts are known as the world's costliest natural disasters impacting a variety of sectors. Despite their wide range of impacts, no universal drought definition has been defined. The goal of this study is to define a universal drought index that considers drought impacts on meteorological, agricultural, hydrological, and stream health categories.

View Article and Find Full Text PDF

The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on the environment. However, the production of biofuels can still have negative impacts on water resources.

View Article and Find Full Text PDF

Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs).

View Article and Find Full Text PDF

Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.

View Article and Find Full Text PDF

Variable selection is a critical step in development of empirical stream health prediction models. This study develops a framework for selecting important in-stream variables to predict four measures of biological integrity: total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, family index of biotic integrity (FIBI), Hilsenhoff biotic integrity (HBI), and fish index of biotic integrity (IBI). Over 200 flow regime and water quality variables were calculated using the Hydrologic Index Tool (HIT) and Soil and Water Assessment Tool (SWAT).

View Article and Find Full Text PDF

Wetlands provide multiple socio-economic benefits, among them mitigating flood through short- and long-term water storage functions and assisting with reduction of downstream flood peaks. However, their effectiveness in controlling floods is dictated by wetland size and distribution within a watershed. Due to the complexity of wetland hydrological processes at the watershed scale, the Soil and Water Assessment Tool (SWAT) was used to study the impact of wetland restoration on streamflow rates and peaks in the Shiawassee River watershed of Michigan.

View Article and Find Full Text PDF

In this study an analytical hierarchy process (AHP) was used for ranking best management practices (BMPs) in the Saginaw River Watershed based on environmental, economic and social factors. Three spatial targeting methods were used for placement of BMPs on critical source areas (CSAs). The environment factors include sediment, total nitrogen, and total phosphorus reductions at the subbasin level and the watershed outlet.

View Article and Find Full Text PDF

Manure-borne pathogens are a threat to water quality and have resulted in disease outbreaks globally. Land application of livestock manure to croplands may result in pathogen transport through surface runoff and tile drains, eventually entering water bodies such as rivers and wetlands. The goal of this study was to develop a robust model for estimating the pathogen removal in surface flow wetlands under pulse loading conditions.

View Article and Find Full Text PDF

Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis.

View Article and Find Full Text PDF

Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection.

View Article and Find Full Text PDF

Anthropogenic activities such as agricultural practices can have large effects on the ecological components and overall health of stream ecosystems. Therefore, having a better understanding of those effects and relationships allows for better design of mitigating strategies. The objectives of this study were to identify influential stream variables that correlate with macroinvertebrate indices using biophysical and statistical models.

View Article and Find Full Text PDF

Increasing concerns regarding water quality in the Great Lakes region are mainly due to changes in urban and agricultural landscapes. Both point and non-point sources contribute pollution to Great Lakes surface waters. Best management practices (BMPs) are a common tool used to reduce both point and non-point source pollution and improve water quality.

View Article and Find Full Text PDF

In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans.

View Article and Find Full Text PDF