Proton NMR spectral resonances of thioredoxin m from spinach have been assigned, and its solution structure has been determined on the basis of 1156 nuclear Overhauser effect- (NOE-) derived distance constraints by using restrained molecular dynamics calculations. The average pairwise root-mean-square deviation (RMSD) for the 25 best NMR structures for the backbone was 1.0 +/- 0.
View Article and Find Full Text PDFWe have analysed the hydrogen/deuterium exchange of the tetramerization domain of human tumour suppressor p53 under mild chemical denaturation conditions, and at different temperatures. Exchange behaviour has been measured for 16 amide protons in the chemical-denaturation studies and for seven protons in the temperature-denaturation studies. The exchange rates are in the range observed for other proteins with similar elements of secondary structure.
View Article and Find Full Text PDFFresenius J Anal Chem
December 2000
Flame-heated tubes are widespread in flame-AAS, mainly for the determination of hydride-forming elements. Instead of the introduction of gaseous compounds liquids can also be introduced continuously in such an absorption cell. With the aid of an HPLC pump the liquid is forced through a very fine nozzle, generating an aerosol beam less than 0.
View Article and Find Full Text PDFWe have studied the biochemical features, the conformational preferences in solution, and the DNA binding properties of human p8 (hp8), a nucleoprotein whose expression is affected during acute pancreatitis. Biochemical studies show that hp8 has properties of the high mobility group proteins, HMG-I/Y. Structural studies have been carried out by using circular dichroism (near- and far-ultraviolet), Fourier transform infrared, and NMR spectroscopies.
View Article and Find Full Text PDFNative-like complexes of proteins, formed by the association of two complementary fragments comprising the entire sequence of the protein, can be used to gain insight into the stability and folding of the intact protein. We have studied the structural, thermodynamic and kinetic properties of four barnase complexes, with the cleavage site at different positions of the amino-acid chain (CB36, at position 36; CB56, at position 56; CB68, at position 68; and CB79, at position 79). The four barnase complexes have native-like structure as shown by fluorescence, far-and near-UV CD, size-exclusion chromatography and NMR.
View Article and Find Full Text PDFThe detailed characterization of denatured proteins remains elusive due to their mobility and conformational heterogeneity. NMR studies are beginning to provide clues regarding residual structure in the denatured state but the resulting data are too sparse to be transformed into molecular models using conventional techniques. Molecular dynamics simulations can complement NMR by providing detailed structural information for components of the denatured ensemble.
View Article and Find Full Text PDFWe report 10 patients with congenital deficiencies of the natural anticoagulant proteins S, C and antithrombin III. Thirteen of a total of 30 pregnancies were managed at the perinatal branch of our department. We discuss the mechanism of action of these proteins and their role in thrombotic events.
View Article and Find Full Text PDFWe have characterised a series of C-terminal fragments of barnase by different biophysical techniques to find out when they acquire secondary and tertiary native-like structure. Fragments B96-110 (which comprises the last 15 residues of the intact protein) up to B37-110 (which involves most of the protein except the two first helices and a loop) were mainly disordered. Only fragment B23-110, which lacks alpha-helix1, showed native-like near and far-UV CD and fluorescence spectra.
View Article and Find Full Text PDFWe are examining possible roles of native and non-native interactions in early events in protein folding by a systematic analysis of the structures of fragments of proteins whose folding pathways are well characterised. Seven fragments of the 110-residue protein barnase, corresponding to the progressive elongation from its N terminus, have been characterised by a battery of biophysical and spectroscopic methods. Barnase is a multi-modular protein that folds via an intermediate in which the C-terminal region of its major alpha-helix (alpha-helix1, residues Thr6-His18) is substantially formed as is also its anti-parallel beta-sheet, centred around a beta-hairpin (residues Ser92-Leu95).
View Article and Find Full Text PDFTwo-dimensional NMR spectroscopy has been used to monitor the exchange of backbone amide protons in ribonuclease A (RNase A) and its subtilisin-cleaved form, ribonuclease S (RNase S). Exchange measurements at two different pH values (5.4 and 6.
View Article and Find Full Text PDFTwo-dimensional NMR spectroscopy has been used to monitor hydrogen-deuterium exchange in chymotrypsin inhibitor 2. Application of two independent tests has shown that at pH 5.3 to 6.
View Article and Find Full Text PDFHydrogen exchange of chymotrypsin inhibitor 2 has been measured in the presence of low concentrations of GdmCl and at different temperatures. The study of exchange at different temperatures allows us to obtain the activation enthalpies for the local exchange processes, and the change in enthalpy between the closed, exchange-incompetent, forms and the open, exchange-competent, forms. From the GdmCl dependence of exchange, an m-value, which is a measure of the new surface area exposed to solvent in the equilibrium between open and closed forms, can be determined for individual protons.
View Article and Find Full Text PDFWe have prepared a family of peptide fragments of the 64 amino acid protein chymotrypsin inhibitor (CI2), corresponding to progressive elongation from the N terminus, in order to elucidate the basis of conformational preferences in single-domain proteins and to obtain insights into their conformational pathway. Structural analysis of the fragment comprising the first 50 residues, CI2(1-50), indicates that it is mainly disordered, with patches of hydrophobic residues exposed to the solvent. Structural characterisation of the fragment CI2(1-63) which lacks only the C-terminal glycine, Gly64, shows native-like structure in all regions of the fragment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 1997
We have documented the folding pathway of the 10-kDa protein barstar from the first few microseconds at the resolution of individual residues from its well characterized denatured state. The denatured state had been shown from NMR to have flickering native-like structure in the first two of its four alpha-helices. phi-value analysis shows that the first helix becomes substantially consolidated as the intermediate is formed in a few hundred microseconds, as does the second to a lesser extent.
View Article and Find Full Text PDFRibonuclease A (RNase A), an unusually well defined enzyme, has been a test protein in the study of a wide variety of chemical and physical methods of protein chemistry. These methods have in turn provided many insights into the functional properties of RNase A, as well as topics of general interest in protein biochemistry. The presence of four disulfide bonds and the existence of two cis peptide bonds preceding prolines in the native state have complicated the analysis of the folding pathway of RNase A.
View Article and Find Full Text PDFBackground: The beta-hairpin of barnase (residues Ser92-Leu95) has been proposed in theoretical and protein engineering studies to be an initiation site for folding [1]. There is evidence for residual structure in this region from NMR studies of the denatured protein under different denaturing conditions [2,3]. A more detailed analysis is possible by NMR studies of isolated fragments.
View Article and Find Full Text PDFBackground: Single-module proteins, such as chymotrypsin inhibitor 2 (CI2), fold as a single cooperative unit. To solve its folding pathway, we must characterize, under conditions that favour folding, its denatured state, its transition state, and its final folded structure. To obtain a "denatured state' that can readily be thus characterized, we have used a trick of cleaving CI2 into two complementary fragments that associate and fold in a similar way to intact protein.
View Article and Find Full Text PDFWe have obtained a series of fragments growing from the N terminus of the protein chymotrypsin inhibitor-2 (C12) in order to study the development of structure on elongation of the polypeptide in solution. We present an extensive biophysical characterization of ten fragments using different conformational probes. Small fragments up to residue 40 of the 64-residue protein are disordered.
View Article and Find Full Text PDFThere is a region of well-ordered structure in the transition state of folding of chymotrypsin inhibitor 2 (CI2) that consists of N-terminal residues in the unique alpha-helix (residues 12 to 24) plus some long range interactions, in particular those of Ala16 with Ile57 and Leu49 in the hydrophobic core. This is proposed to be a nucleation site. A crucial question for understanding the initiation of protein folding is: when is the nucleation site formed? Is the alpha-helix pre-formed in the nominally unfolded state, or does it require long-range interactions to be stabilized? To answer this question, we have characterized a series of N-terminal fragments of CI2, each containing an increasing number of subsets of the regular secondary structure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 1995
We have prepared a family of peptide fragments of the 64-residue chymotrypsin inhibitor 2, corresponding to its progressive elongation from the N terminus. The growing polypeptide chain has little tendency to form stable structure until it is largely synthesized, and what structures are formed are nonnative and lack, in particular, the native secondary structural elements of alpha-helix and beta-sheet. These elements then develop as sufficient tertiary interactions are made in the nearly full-length chain.
View Article and Find Full Text PDFIn order to have a present perspective on the prevalence on the epidemiology of some tissue helminthiasis in Lonquimay County, southern Chile, in 1993 a seroepidemiological survey, by means of an indirect hemagglutination test (IHAT) for hydatidosis, cysticercosis and trichinosis was undertaken. In 11 (1.2%), 10 (1.
View Article and Find Full Text PDFHigh-resolution three-dimensional structures of bovine pancreatic ribonuclease A in aqueous solution have been determined by nuclear magnetic resonance (NMR) spectroscopy combined with restrained molecular dynamics calculations. The structures are based on: (1) 464 interproton distance constraints with accurate upper and lower limits, determined from build-up rates of nuclear Overhauser effects (NOE) by using the complete relaxation matrix; (2) 999 more approximate upper limits for interproton distances; and (3) 42 dihedral angle constraints (37 for phi and 5 for chi 1). A total of 16 structures were calculated, which show a root-mean-square (r.
View Article and Find Full Text PDFA fragment of barnase comprising amino acids 1 to 36 (B(1-36)) that encompasses the region containing the two large helices (residues 6-18 and 26-34) of the native protein has been obtained by cleavage of the barnase mutant Val36----Met with cyanogen bromide. The circular dichroism (c.d.
View Article and Find Full Text PDFThe rational design of proteins requires knowledge of the helix-forming propensities (s-values) of the different amino acids. There is, however, considerable controversy about the relative values for alanine and glycine. We find from experiments on mutants of barnase that the relative effect of Ala versus Gly on helix stability depends crucially on the position in the helix (whether they are at the ends (caps) or are internal) and the context (the influence of their neighbours).
View Article and Find Full Text PDFA method is proposed to generate initial structures in cases where the distance geometry method may fail, such as when the set of 1H NMR NOE-based distance constraints is small in relation to the size of the protein. The method introduces an initial correlation between the phi and psi backbone angles (based on empirical observations) which is relaxed in later stages of the calculation. The obtained initial structures are refined by well-established methods of energy minimization and restrained molecular dynamics.
View Article and Find Full Text PDF