J Opt Soc Am A Opt Image Sci Vis
February 2006
A synthesized photochromic compound-pyrrylfulgide--is prepared as a thin film doped in a polymethylmethacrylate (PMMA) matrix. Under irradiation by UV light, the film converts from the bleached state into a colored state that has a maximum absorption at 635 nm and is thermally stable at room temperature. When the colored state is irradiated by a linearly polarized 650 nm laser, the film returns to the bleached state; photoinduced anisotropy is produced during this process.
View Article and Find Full Text PDFOptical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image's intensity and its signal-to-noise ratio were analyzed.
View Article and Find Full Text PDFIn polymeric films of bacteriorhodopsin (BR) a photoconversion product, which was named the F620 state, was observed on excitation of the film with 532 nm nanosecond laser pulses. This photoproduct shows a strong nonlinear absorption. Such BR films can be used for write-once-read-many (WORM) optical data storage.
View Article and Find Full Text PDFPhotoinduced anisotropy of a photochromic pyrrylfulgide/PMMA film was investigated by using two linearly polarized beams. Excitation by linearly polarized light induces into the film an optical axis that has the same polarization as the excitation beam. This causes a change of the transmittance and of the polarization state of the detection beam.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
June 2003
BR-D96N was a genetically mutated product of bacteriorhodopsin (BR) with obvious improved photochromic effect. Compared with the wild type BR, BR-D96N had a lifetime of M state prolonged to 5 min, showing obvious saturation absorption and lower light intensity in saturation absorption (0.4 mW/cm(2)).
View Article and Find Full Text PDF