Publications by authors named "Neil Vasan"

Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.

View Article and Find Full Text PDF

Introduction: Approximately 20% of patients living with colorectal cancer (CRC) have activating mutations in their tumors in the PIK3CA oncogene. Two or more activating mutations (multi-hit) for the PIK3CA allele increase PI3K⍺ signaling compared to single-point mutations, resulting in exceptional response to PI3K⍺ inhibition. We aimed to identify the prevalence of PIK3CA multi-hit mutations in metastatic CRC to identify patients who may benefit from PI3K inhibitors.

View Article and Find Full Text PDF

Background: Tumors harboring two or more PIK3CA short variant (SV) ("multi-hit") mutations have been linked to improved outcomes with anti-PIK3CA-targeted therapies in breast cancer. The landscape and clinical implications of multi-hit PIK3CA alterations in clinically advanced prostate cancer (CAPC) remains elusive.

Objective: To evaluate the genomic landscape of single-hit and multi-hit PIK3CA genomic alterations in CAPC.

View Article and Find Full Text PDF

Purpose: Medication nonadherence is common among patients with breast cancer (BC) and increases BC mortality and complications from comorbidities. There is growing interest in mobile health interventions such as smartphone applications (apps) to promote adherence.

Methods: Use of Medisafe, a medication reminder and tracking app, was tested over 12 weeks among patients on BC treatment and at least one oral medication.

View Article and Find Full Text PDF

In their recent paper published in Nature, Luo et al. investigate the cancer-cell-intrinsic roles of the PI3Kγ complex in leukemia. Their findings pinpoint PI3Kγ inhibition as a possible novel treatment avenue for a subset of acute leukemias.

View Article and Find Full Text PDF

Single-nucleotide variants (SNVs) in key T cell genes can drive clinical pathologies and could be repurposed to improve cellular cancer immunotherapies. Here, we perform massively parallel base-editing screens to generate thousands of variants at gene loci annotated with known or potential clinical relevance. We discover a broad landscape of putative gain-of-function (GOF) and loss-of-function (LOF) mutations, including in PIK3CD and the gene encoding its regulatory subunit, PIK3R1, LCK, SOS1, AKT1 and RHOA.

View Article and Find Full Text PDF

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood.

View Article and Find Full Text PDF

Base editing enables generation of single nucleotide variants, but large-scale screening in primary human T cells is limited due to low editing efficiency, among other challenges . Here, we developed a high-throughput approach for high-efficiency and massively parallel adenine and cytosine base-editor screening in primary human T cells. We performed multiple large-scale screens editing 102 genes with central functions in T cells and full-length tiling mutagenesis of selected genes, and read out variant effects on hallmarks of T cell anti-tumor immunity, including activation, proliferation, and cytokine production.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes.

View Article and Find Full Text PDF

This is the first peer-reviewed report of an allosteric, mutant-selective PI3Kα inhibitor, STX-478, that reduces PIK3CA-mutant tumor growth in mice. However, in contrast to the FDA-approved PI3Kα isoform-selective inhibitor alpelisib, STX-478 does not induce hyperglycemia or other metabolic dysfunctions. See related article by Buckbinder et al.

View Article and Find Full Text PDF

The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization.

View Article and Find Full Text PDF
Article Synopsis
  • Protein phosphorylation is a major biological process, with over 90,000 phosphorylation sites identified and linked to various human diseases.
  • Researchers analyzed the substrate specificity of 303 Ser/Thr kinases in humans, revealing a diverse range of preferences and the role of negative selectivity in their activity.
  • The findings provide insights into cellular signaling pathways, identify kinases responsible for phosphorylation events, and enhance our understanding of biological processes affected by various stimuli.
View Article and Find Full Text PDF

Purpose: To comprehensively characterize tissue-specific and molecular subclasses of multiple PIK3CA (multi-PIK3CA) mutations and assess their impact on potential therapeutic outcomes.

Experimental Design: We profiled a pan-cancer cohort comprised of 352,392 samples across 66 tumor types using a targeted hybrid capture-based next-generation sequencing panel covering at least 324 cancer-related genes. Molecularly defined subgroups, allelic configuration, clonality, and mutational signatures were identified and tested for association with PI3K inhibitor therapeutic response.

View Article and Find Full Text PDF

Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events.

View Article and Find Full Text PDF

De novo metastatic breast cancer (dnMBC) represents a minority of MBC cases, and as such, its genomics are poorly understood. Characterizing the genomics of dnMBC represents an opportunity to delineate metastatic drivers in the absence of treatment selection. In this review, we first summarize the literature of the genomics of MBC which showed that MBCs have greater mutational burden than early stage, treatment naïve breast cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Fructose consumption is associated with increased rates of obesity and cancer, highlighting its health risks.
  • Dietary fructose is metabolized in the small intestine, leading to high levels of fructose 1-phosphate, which affects cell mechanisms that may contribute to these health issues.
  • Research shows that fructose enhances intestinal cell survival and villus length, improving nutrient absorption and fat accumulation, thereby linking high-fructose diets to obesity and tumor growth.
View Article and Find Full Text PDF

Alpelisib is a α-selective phosphatidylinositol 3-kinase (PI3K) inhibitor approved for treatment of postmenopausal women, and men, with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-), PIK3CA-mutated, advanced breast cancer (ABC). Hyperglycemia is a common, on-target adverse effect that impairs treatment efficacy and increases the rate of treatment delays, dose reductions, and discontinuation. Currently, there are no clear guidelines on how to manage hyperglycemia due to alpelisib when metformin is not effective.

View Article and Find Full Text PDF
Article Synopsis
  • Cytosolic DNA in unstable metastatic cancer cells activates the cGAS-STING immune pathway, but tumors can evade immune detection by manipulating inflammatory signals.
  • The enzyme ENPP1 plays a key role in promoting metastasis by breaking down cGAMP, which normally stimulates immune responses, leading to the production of adenosine that suppresses immunity.
  • Loss of ENPP1 reduces metastasis and enhances the effectiveness of immunotherapy by allowing more immune cells to infiltrate tumors, while high levels of ENPP1 are linked to increased metastasis and resistance to treatments like anti-PD-1/PD-L1.
View Article and Find Full Text PDF

On-target resistance to next-generation TRK inhibitors in TRK fusion-positive cancers is largely uncharacterized. In patients with these tumors, we found that TRK xDFG mutations confer resistance to type I next-generation TRK inhibitors designed to maintain potency against several kinase domain mutations. Computational modeling and biochemical assays showed that TRKA and TRKC xDFG substitutions reduce drug binding by generating steric hindrance.

View Article and Find Full Text PDF

Alpelisib is a selective inhibitor of PI3Kα, shown to improve outcomes for mutant, hormone receptor positive (HR+) metastatic breast cancers (MBC) when combined with antiestrogen therapy. To uncover mechanisms of resistance, we conducted a detailed, longitudinal analysis of tumor and plasma circulating tumor DNA among such patients from a phase I/II trial combining alpelisib with an aromatase inhibitor (AI) (NCT01870505). The trial's primary objective was to establish safety with maculopapular rash emerging as the most common grade 3 adverse event (33%).

View Article and Find Full Text PDF

Cancers develop as a result of driver mutations that lead to clonal outgrowth and the evolution of disease. The discovery and functional characterization of individual driver mutations are central aims of cancer research, and have elucidated myriad phenotypes and therapeutic vulnerabilities. However, the serial genetic evolution of mutant cancer genes and the allelic context in which they arise is poorly understood in both common and rare cancer genes and tumour types.

View Article and Find Full Text PDF

The problem of resistance to therapy in cancer is multifaceted. Here we take a reductionist approach to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures. We propose four general solutions to drug resistance that are based on earlier detection of tumours permitting cancer interception; adaptive monitoring during therapy; the addition of novel drugs and improved pharmacological principles that result in deeper responses; and the identification of cancer cell dependencies by high-throughput synthetic lethality screens, integration of clinico-genomic data and computational modelling.

View Article and Find Full Text PDF
Article Synopsis
  • Activating mutations in PI3Kα are common in breast cancer and other tumors, with 12-15% of cases showing multiple mutations.
  • The majority of these mutations are double mutations occurring on the same allele, leading to heightened PI3K activity and promoting tumor growth.
  • Double mutations enhance sensitivity to PI3Kα inhibitors more than single mutations, due to mechanisms that disrupt inhibition and increase lipid binding.
View Article and Find Full Text PDF

We integrated the genomic sequencing of 1,918 breast cancers, including 1,501 hormone receptor-positive tumors, with detailed clinical information and treatment outcomes. In 692 tumors previously exposed to hormonal therapy, we identified an increased number of alterations in genes involved in the mitogen-activated protein kinase (MAPK) pathway and in the estrogen receptor transcriptional machinery. Activating ERBB2 mutations and NF1 loss-of-function mutations were more than twice as common in endocrine resistant tumors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5uflvhmlfr2orl5egqa1kd73civ9uilp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once