Geophysical methods can provide three-dimensional (3D), spatially continuous estimates of soil moisture. However, point-to-point comparisons of geophysical properties to measure soil moisture data are frequently unsatisfactory, resulting in geophysics being used for qualitative purposes only. This is because (1) geophysics requires models that relate geophysical signals to soil moisture, (2) geophysical methods have potential uncertainties resulting from smoothing and artifacts introduced from processing and inversion, and (3) results from multiple geophysical methods are not easily combined within a single soil moisture estimation framework.
View Article and Find Full Text PDFWe present a geostatistics-based stochastic salinity estimation framework for the Montebello Oil Field that capitalizes on available total dissolved solids (TDS) data from groundwater samples as well as electrical resistivity (ER) data from borehole logging. Data from TDS samples (n = 4924) was coded into an indicator framework based on falling below four selected thresholds (500, 1000, 3000, and 10,000 mg/L). Collocated TDS-ER data from the surrounding groundwater basin were then employed to produce a kernel density estimator to establish conditional probabilities for ER data (n = 8 boreholes) falling below the selected TDS thresholds within the Montebello Oil Field area.
View Article and Find Full Text PDFIn cooperation with the U.S. Environmental Protection Agency (EPA), the U.
View Article and Find Full Text PDFThe hydrogeology below large surface water features such as rivers and estuaries is universally under-informed at the long reach to basin scales (tens of km+). This challenge inhibits the accurate modeling of fresh/saline groundwater interfaces and groundwater/surface water exchange patterns at management-relevant spatial extents. Here we introduce a towed, floating transient electromagnetic (TEM) system (i.
View Article and Find Full Text PDFA new version of the computer program FLASH (Flow-Log Analysis of Single Holes) is presented for the analysis of borehole vertical flow logs to estimate fracture (or layer) transmissivities and far-field hydraulic heads. The program is written in R, an open-source environment. All previous features have been retained and new features incorporated including more rigorous parameter estimation, uncertainty analysis, and improved data import.
View Article and Find Full Text PDFQuantitative evaluation of groundwater/surface water exchange dynamics is universally challenging in large river systems, because existing methodology often does not yield spatially-distributed data and is difficult to apply in deeper water. Here we apply a combined near-surface geophysical and direct groundwater chemical toolkit to refine fresh groundwater discharge estimates to the Colorado River through a 4-km wetland that borders the town of Moab, Utah, USA. Preliminary characterization of raw electromagnetic imaging (EMI) data, collected by kayak and by walking, was used to guide additional direct-contact electrical measurements and installation of new monitoring wells.
View Article and Find Full Text PDFNoninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g.
View Article and Find Full Text PDFGeophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models.
View Article and Find Full Text PDFExpert Rev Gastroenterol Hepatol
February 2012
Angle-resolved low-coherence interferometry (a/LCI) is an optical biopsy technique that measures scattered light from tissue to determine nuclear size with submicron-level accuracy. The a/LCI probe can be deployed through the accessory channel of a standard endoscope and provides feedback to physicians to guide physical biopsies. The technique has been validated in animal and ex vivo human studies, and has been used to detect dysplasia in Barrett's esophagus patients in vivo.
View Article and Find Full Text PDFAngle-resolved low coherence interferometry (a/LCI) is an optical biopsy technique that allows for depth-resolved, label-free measurement of the average size and optical density of cell nuclei in epithelial tissue to assess the tissue health. a/LCI has previously been used clinically to identify the presence of dysplasia in Barrett's Esophagus patients undergoing routine surveillance. We present the results of a pilot, ex vivo study of tissues from 27 patients undergoing partial colonic resection surgery, conducted to evaluate the ability of a/LCI to identify dysplasia.
View Article and Find Full Text PDFThis review covers the development of angle-resolved low coherence interferometry (a/LCI) from initial development through clinical application. In the first applications, the approach used a time-domain interferometry scheme and was validated using animal models of carcinogenesis to assess the feasibility of detecting dysplasia in situ. Further development of the approach led to Fourier-domain interferometry schemes with higher throughput and endoscope-compatible probes to enable clinical application.
View Article and Find Full Text PDFWe present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.
View Article and Find Full Text PDFBackground & Aims: Patients with Barrett's esophagus (BE) show increased risk of developing esophageal adenocarcinoma and are routinely examined using upper endoscopy with biopsy to detect neoplastic changes. Angle-resolved low coherence interferometry (a/LCI) uses in vivo depth-resolved nuclear morphology measurements to detect dysplasia. We assessed the clinical utility of a/LCI in the endoscopic surveillance of patients with BE.
View Article and Find Full Text PDFWe present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach-Zehnder interferometry.
View Article and Find Full Text PDF