Expression of many MHC genes is enhanced at the transcriptional or posttranscriptional level following exposure to the cytokine IFN-gamma. However, in this study we found that IFN-gamma down-regulated the constitutive expression of the neonatal Fc receptor (FcRn), an MHC class I-related molecule that functions to transport maternal IgG and protect IgG and albumin from degradation. Epithelial cell, macrophage-like THP-1 cell, and freshly isolated human PBMC exposure to IFN-gamma resulted in a significant decrease of FcRn expression as assessed by real-time RT-PCR and Western blotting.
View Article and Find Full Text PDFThe neonatal Fc receptor for immunoglobulin G (IgG) (FcRn) functions to transport maternal IgG to the fetal/neonatal animals and protects IgG from catabolism. The present study identified two pFcRn cDNAs (1.071 and 0.
View Article and Find Full Text PDFExtensive testing of hydrolysates of commercially available organosilanes has identified a number of bifunctional organosiloxane compounds that show potential as therapeutics for treatment of diseases characterized by amyloid deposition such as Alzheimer's disease (AD). All of these compounds protect from and/or reverse the metal-induced aggregation of amyloid Abeta(1-42) peptide in dynamic light scattering (DLS) assays in trifluoroethanol (TFE) solutions, protect from and/or reverse the metal-induced loss of alpha-helical structure in TFE solutions of amyloid Abeta(1-42) as measured by circular dichroism (CD), and are able to cross blood-brain barrier models at rates above background using Caco-2 and MDCK cell permeation assays. Based on these studies, we conclude that members of this class of bifunctional organosiloxanes are promising candidates for testing in treatment and/or prevention of AD and other diseases characterized by amyloid deposition.
View Article and Find Full Text PDFThe neonatal Fc receptor, FcRn, transports proteins through cells, avoiding degradative compartments. FcRn is used in many physiological processes where proteins must remain intact while they move through cells. These contexts include the transport of IgG antibodies from mother to offspring, and the protection of IgG and albumin from catabolism.
View Article and Find Full Text PDFEndocytosis of membrane proteins is typically mediated by signals present in their cytoplasmic domains. These signals usually contain an essential tyrosine or pair of leucine residues. Both tyrosine- and dileucine-based endocytosis signals are recognized by the adaptor complex AP-2.
View Article and Find Full Text PDFAdministration of therapeutic proteins by methods other than injection is limited, in part, by inefficient penetration of epithelial barriers. Therefore, unique approaches to breaching these barriers are needed. The neonatal constant region fragment (Fc) receptor (FcRn), which is responsible for IgG transport across the intestinal epithelium in newborn rodents, is expressed in epithelial cells in adult humans and non-human primates.
View Article and Find Full Text PDFMaternal antibodies transported across the placenta protect the newborn. Maternal immunoglobulin G (IgG) concentrations in fetal blood increase from early in the second trimester through term, most antibodies being acquired during the third trimester. IgG1 is the most efficiently transported subclass and IgG2 the least.
View Article and Find Full Text PDFThe intestinal Fc receptor, FcRn, functions in the maternofetal transfer of gamma globulin (IgG) in the neonatal rodent. In humans, most of this transfer is presumed to occur in utero via the placenta. Although the fetus swallows amniotic fluid that contains immunoglobulin, it is unknown whether this transfer also occurs via the fetal intestine.
View Article and Find Full Text PDF