Publications by authors named "Neil Sherborne"

Toxicokinetic-toxicodynamic (TKTD) modeling has received increasing attention in terms of the regulatory environmental risk assessment of chemicals. This type of mechanistic model can integrate all available data from individual-level bioassays into a single framework and enable refined risk assessments by extrapolating from laboratory results to time-variable exposure scenarios, based, for instance, on surface water exposure modeling (e.g.

View Article and Find Full Text PDF

Insecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects.

View Article and Find Full Text PDF

Thanks to growing interest and research in the field, toxicokinetic-toxicodynamic (TKTD) models are close to realising their potential in environmental risk assessment (ERA) of chemicals such as plant protection products. A fundamental application is to find a multiplicative scale factor which-when applied to an exposure profile-results in some specified effect relative to a control. The approach is similar to applying assessment factors to experimental results, common in regulatory frameworks.

View Article and Find Full Text PDF

Toxicokinetic-toxicodynamic (TKTD) modeling is essential to make sense of the time dependence of toxic effects, and to interpret and predict consequences of time-varying exposure. These advantages have been recognized in the regulatory arena, especially for environmental risk assessment of pesticides, where time-varying exposure is the norm. We critically evaluate the link between the modeled variables in TKTD models and the observations from laboratory ecotoxicity tests.

View Article and Find Full Text PDF

Bioenergetic models, and specifically dynamic energy budget (DEB) theory, are gathering a great deal of interest as a tool to predict the effects of realistically variable exposure to toxicants over time on an individual animal. Here we use aquatic ecological risk assessment (ERA) as the context for a review of the different model variants within DEB and the closely related DEBkiss theory (incl. reserves, ageing, size & maturity, starvation).

View Article and Find Full Text PDF

To assess ecological risks from chemical exposure, we need tools to extrapolate from the sublethal effects observed in the laboratory under constant exposure to realistic time-varying exposures. Dynamic energy budget (DEB) theory offers a mechanistic modeling approach to describe the entire life history of a single organism and the effects of toxicant exposure. We use a simplified model, which can be wholly calibrated from standard chronic bioassay data.

View Article and Find Full Text PDF

This paper introduces a novel extension of the edge-based compartmental model to epidemics where the transmission and recovery processes are driven by general independent probability distributions. Edge-based compartmental modelling is just one of many different approaches used to model the spread of an infectious disease on a network; the major result of this paper is the rigorous proof that the edge-based compartmental model and the message passing models are equivalent for general independent transmission and recovery processes. This implies that the new model is exact on the ensemble of configuration model networks of infinite size.

View Article and Find Full Text PDF