Drug resistance in presents a formidable challenge to the humanity. And, unavailability of an effective vaccine worsens the situation further. Autophagy is one of the mechanisms employed by parasite to evade drug pressure to survive.
View Article and Find Full Text PDFThe suboptimal efficacies of existing anti-malarial drugs attributed to the emergence of drug resistance dampen the clinical outcomes. Hence, there is a need for developing novel drug and drug targets. Recently silver nanoparticles (AgNPs) constructed with the leaf extracts of Euphorbia cotinifolia were shown to possess antimalarial activity.
View Article and Find Full Text PDFAntimalarial drug resistance and unavailability of effective vaccine warrant for newer drugs and drug targets. Hence, anti-inflammatory activity of phyto-compound (oleuropein; OLP) was determined in antigen (LPS)-stimulated human THP-1 macrophages (macrophage model of inflammation; MMI). Reduction in the inflammation was controlled by the PI3K-Akt1 signaling to establish the "immune-homeostasis.
View Article and Find Full Text PDFMalaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease.
View Article and Find Full Text PDF