Publications by authors named "Neil R Chapman"

Human parturition is associated with many pro-inflammatory mediators which are regulated by the nuclear factor-kappaB (NF-κB) family of transcription factors. In the present study, we employed a ChIP-on-chip approach to define genomic loci within chromatin of PHM1-31 myometrial cells that were occupied by RelA-containing NF-κB dimers in response to a TNF stimulation of 1 h. In TNF-stimulated PHM1-31 cells, anti-RelA serum enriched 13 300 chromatin regions; importantly, 11 110 regions were also enriched by anti-RelA antibodies in the absence of TNF.

View Article and Find Full Text PDF

The onset of human parturition is associated with up-regulation of pro-inflammatory cytokines including tumor necrosis factor (TNF) as well as changes in ion flux, principally Ca(2+) and K(+), across the myometrial myocytes membrane. Elevation of intra-cellular Ca(2+) from the sarcoplasmic reticulum opens L-type Ca(2+) channels (LTCCs); in turn this increased calcium level activates MaxiK channels leading to relaxation. While the nature of how this cross-talk is governed remains unclear, our previous work demonstrated that the pro-inflammatory cytokine, TNF, and the histone deacetylase inhibitor, Trichostatin-A (TSA), exerted opposing effects on the expression of the pro-quiescent Gαs gene in human myometrial cells.

View Article and Find Full Text PDF

Background: Implantation is a complex process that requires a delicate cooperation between the immune and reproductive system. Any interference in the fine balance could result in embryo loss and infertility. We have recently shown that Toll-like receptor 5 activation results in a decrease of trophoblast cells binding to endometrial cells in an in vitro model of human implantation.

View Article and Find Full Text PDF

The onset of parturition is associated with a number of proinflammatory mediators that are themselves regulated by the nuclear factor κB (NF-κB) family of transcription factors. In this context, we previously reported that the RelA NF-κB subunit represses transcription and mRNA expression of the proquiescent Gαs gene in human myometrial cells following stimulation with the proinflammatory cytokine TNF. In the present study, we initially defined the functional consequence of this on myometrial contractility.

View Article and Find Full Text PDF

Interactions between the nuclear factor kappaB (NF-kappaB) family of proteins (RelA, RelB, c-Rel, p50 and p52) and DNA are vital for cells to function normally; for example, in the human myometrium, NF-kappaB-regulated pro-inflammatory mediators, including TNFalpha, IL-1beta, IL-8 and COX-2 are associated with the onset of labour. NF-kappaB, however, regulates the expression of over 400 genes, although it is unlikely these would all be activated in concert by a single inducer. At present, defining the role of the NF-kappaB RelA:p50 dimer, which governs a number of inflammatory promoters, is at the forefront of the parturition research field.

View Article and Find Full Text PDF

Human parturition is associated with a modification in the sensitivity of the myometrium to progesterone. The molecular basis for this change, however, remains unclear. It is well documented that progesterone can exert its effects through non-genomic mechanisms, including acting through membrane-bound progesterone receptors (mPRs).

View Article and Find Full Text PDF

In humans, the factors that govern the switch from myometrial quiescence to coordinated contractions at the initiation of labor are not well defined. The onset of parturition is itself associated with increases in a number of proinflammatory mediators, many of which are regulated by the nuclear factor kappaB (NF-kappaB) family of transcription factors. Recently, we have provided evidence that the RelA NF-kappaB subunit associates with protein kinase A in pregnant myometrial tissue, suggesting links with the Galphas/cAMP/protein kinase A pathway.

View Article and Find Full Text PDF

Objective: In humans, the factors that govern the switch from myometrial quiescence to coordinated contractions at the initiation of labor are not well defined. Recent studies have highlighted a role for the coactivator, CREB binding protein (CBP), in the human myometrium during pregnancy and labor through its ability to acetylate histones. In the present study, the expression of CBP and its related coactivator, p300, were examined.

View Article and Find Full Text PDF

In humans, the factors that govern the switch from myometrial quiescence to coordinated contractions at the initiation of labor are not well defined. The onset of parturition is itself associated with increases in a number of proinflammatory factors, many of which are regulated by the nuclear factor kappaB (NF-kappaB) family of transcription factors. The expression and DNA-binding activity of NF-kappaB in the myometrium during gestation and parturition were examined.

View Article and Find Full Text PDF

Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37).

View Article and Find Full Text PDF