Purpose: CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease.
View Article and Find Full Text PDFBackground: Improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II.
Methods: CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked V domains that avidly bind and block PD1 and LAG3 on dual-positive T cells.
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range (13)C-(13)C correlation spectra and the third based on the identification of intermolecular interactions in (13)C-(15)N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3 or PI3K-SH3), that efficient (13)C-(13)C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils.
View Article and Find Full Text PDFThe SH3 domain of the PI3 kinase (PI3-SH3 or PI3K-SH3) readily aggregates into fibrils in vitro and has served as an important model system in the investigation of the molecular properties and mechanism of formation of amyloid fibrils. We describe the molecular conformation of PI3-SH3 in amyloid fibril form as revealed by magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy. The MAS NMR spectra of these fibrils display excellent resolution, with narrow (13)C and (15)N line widths, representing a high degree of structural order and the absence of extensive molecular motion for the majority of the polypeptide chain.
View Article and Find Full Text PDFProteins with a high propensity to aggregate can be largely prevented from doing so with surprisingly small changes to their primary structure. By using a combination of rational design and quantitative measurements of aggregation rates, we show that adding a single charge in specific "gatekeeper" regions is sufficient to change the timescale for amyloid fibril growth from minutes to weeks, thereby dramatically reducing the efficiency of this process.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
A key issue in understanding the pathogenic conditions associated with the aberrant aggregation of misfolded proteins is the identification and characterization of species formed during the aggregation process. Probing the nature of such species has, however, proved to be extremely challenging to conventional techniques because of their transient and heterogeneous character. We describe here the application of a two-color single-molecule fluorescence technique to examine the assembly of oligomeric species formed during the aggregation of the SH3 domain of PI3 kinase.
View Article and Find Full Text PDF