Publications by authors named "Neil Perry"

Shiga toxin-producing (STEC) are zoonotic pathogens that cause symptoms of severe gastrointestinal disease, including haemolytic uraemic syndrome (HUS), in humans. Currently in England, STEC serotypes other than O157:H7 are not cultured at the local hospital laboratories. The aim of this study was to evaluate the utility of CHROMagar STEC for the direct detection of STEC from faecal specimens in a diagnostic setting, compared to the current reference laboratory method using PCR targeting the Shiga-toxin gene () to test multiple colonies cultured on MacConkey agar.

View Article and Find Full Text PDF

Experiments using bacteriophage (phage) to infect bacterial strains have helped define some basic genetic concepts in microbiology, but our understanding of the complexity of bacterium-phage interactions is still limited. As the global threat of antibiotic resistance continues to increase, phage therapy has reemerged as an attractive alternative or supplement to treating antibiotic-resistant bacterial infections. Further, the long-used method of phage typing to classify bacterial strains is being replaced by molecular genetic techniques.

View Article and Find Full Text PDF

Shiga toxin-producing (STEC) O157:H7 is a public health threat and outbreaks occur worldwide. Here, we investigate genomic differences between related STEC O157:H7 that caused two outbreaks, eight weeks apart, at the same restaurant. Short-read genome sequencing divided the outbreak strains into two sub-clusters separated by only three single-nucleotide polymorphisms in the core genome while traditional typing identified them as separate phage types, PT8 and PT54.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) are considered to be a significant threat to public health due to the severity of gastrointestinal symptoms associated with human infection. In England STEC O157 is the most commonly detected STEC serogroup, however, the implementation of PCR at local hospital laboratories has resulted in an increase in the detection of non-O157 STEC. The aim of this study was to evaluate the use of whole genome sequencing (WGS) for routine public health surveillance of non-O157 STEC by comparing this approach to phenotypic serotyping and PCR for subtyping the stx-encoding genes.

View Article and Find Full Text PDF

Shiga-toxin-producing (STEC) O157:H7 is a recently emerged zoonotic pathogen with considerable morbidity. Since the emergence of this serotype in the 1980s, research has focussed on unravelling the evolutionary events from the O55:H7 ancestor to the contemporaneous globally dispersed strains observed today. In this study, the genomes of over 1000 isolates from both human clinical cases and cattle, spanning the history of STEC O157:H7 in the UK, were sequenced.

View Article and Find Full Text PDF

Background: National surveillance of gastrointestinal pathogens, such as Shiga toxin-producing Escherichia coli O157 (STEC O157), is key to rapidly identifying linked cases in the distributed food network to facilitate public health interventions. In this study, we used whole-genome sequencing (WGS) as a tool to inform national surveillance of STEC O157 in terms of identifying linked cases and clusters and guiding epidemiological investigation.

Methods: We retrospectively analyzed 334 isolates randomly sampled from 1002 strains of STEC O157 received by the Gastrointestinal Bacteria Reference Unit at Public Health England, Colindale, in 2012.

View Article and Find Full Text PDF

Background: Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity.

View Article and Find Full Text PDF

The ability of Shiga toxin-producing Escherichia coli (STEC) to cause severe illness in humans is determined by multiple host factors and bacterial characteristics, including Shiga toxin (Stx) subtype. Given the link between Stx2a subtype and disease severity, we sought to identify the stx subtypes present in whole genome sequences (WGS) of 444 isolates of STEC O157. Difficulties in assembling the stx genes in some strains were overcome by using two complementary bioinformatics methods: mapping and de novo assembly.

View Article and Find Full Text PDF

The implementation of direct testing of clinical faecal specimens for gastrointestinal (GI) pathogens by PCR offers a sensitive and comprehensive approach for the detection of Shiga toxin-producing Escherichia coli (STEC). The introduction of a commercial PCR assay, known as GI PCR, for the detection of GI pathogens at three frontline hospital laboratories in England between December 2012 and December 2013 led to a significant increase in detection of STEC other than serogroup O157 (non-O157 STEC). In 2013, 47 isolates were detected in England, compared with 57 in the preceding 4 years (2009-2012).

View Article and Find Full Text PDF

Multilocus variable number tandem repeat analysis (MLVA) provides microbiological support for investigations of clusters of cases of infection with Shiga toxin-producing E. coli (STEC) O157. All confirmed STEC O157 isolated in England and submitted to the Gastrointestinal Bacteria Reference Unit (GBRU) during a six month period were typed using MLVA, with the aim of assessing the impact of this approach on epidemiological investigations.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli serotype O117:K1:H7 is a cause of persistent diarrhea in travelers to tropical locations. Whole genome sequencing identified genetic mechanisms involved in the pathoadaptive phenotype. Sequencing also identified toxin and putative adherence genes flanked by sequences indicating horizontal gene transfer from Shigella dysenteriae and Salmonella spp.

View Article and Find Full Text PDF

In 2009, an outbreak of enterohemorrhagic Escherichia coli (EHEC) on an open farm infected 93 persons, and approximately 22% of these individuals developed hemolytic-uremic syndrome (HUS). Genome sequencing was used to investigate outbreak-derived animal and human EHEC isolates. Phylogeny based on the whole-genome sequence was used to place outbreak isolates in the context of the overall E.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the salivary antibody response to E. coli O157 LPS in 44 patients who already had serum antibodies for the pathogen.
  • Out of the patients, 20 showed salivary antibodies, resulting in a test sensitivity of 0.45 and a perfect predictive positive value for seropositivity.
  • None of the 477 control volunteers had specific salivary antibodies for E. coli O157, but 15 showed non-specific binding to both O157 LPS and BSA.
View Article and Find Full Text PDF

Certain strains of Shiga toxin-producing Escherichia coli (STEC) which do not have the locus of enterocyte effacement pathogenicity island carry the STEC autoagglutinating adhesin (saa) gene. The distribution of the saa gene in STEC isolates from patients with hemolytic-uremic syndrome (HUS), patients with less severe diarrheal disease, asymptomatic individuals, and healthy cattle was examined. saa-positive strains were detected more frequently (P < 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined blood samples from a pregnant woman with hemolytic uremic syndrome due to E. coli O157 to track antibody production against specific E. coli antigens.
  • Antibodies of the IgM class peaked at 9 days post-diarrhea, while IgG levels rose significantly by day 8 and remained high through day 18; however, IgA antibodies were absent.
  • No antibodies were found in the newborn or cord blood, highlighting the unique immune response dynamics during pregnancy.
View Article and Find Full Text PDF