We present the first controlled-environment measurements of the optical path-length change response of telecommunication submarine cables to active seismic and acoustic waves. We perform the comparison among integrated (optical interferometry) and distributed (distributed acoustic sensing, DAS) fibre measurements and ground truth data acquired by 58 geophones, 20 three-axis seismometers and 7 microphones. The comparison between different seismic acquisition methods is an essential step towards full validation and calibration of the data acquired using novel cable-based sensing techniques.
View Article and Find Full Text PDFCollection and preservation of plasma are challenging in remote or under-resourced settings. The cobas® Plasma Separation Card (PSC) is an alternative specimen type for blood-borne pathogen nucleic acid quantitation. We assessed PSC as a specimen type for HCV RNA quantitation in Pakistan.
View Article and Find Full Text PDFResistance to antiretroviral drugs used to treat HIV is an important and evolving concern, particularly in low- and middle-income countries (LMICs) which have been impacted to the greatest extent by the HIV pandemic. Efforts to monitor the emergence and transmission of resistance over the past decade have shown that drug resistance-especially to the nucleoside analogue and non-nucleoside reverse transcriptase inhibitors-can (and have) increased to levels that can jeopardize the efficacy of available treatment options at the population level. The global shift to integrase-based regimens as the preferred first-line therapy as well as technological advancements in the methods for detecting resistance have had an impact in broadening and diversifying the landscape of and use case for HIV drug resistance testing.
View Article and Find Full Text PDFHIV drug resistance (HIVDR) is a major challenge to the effectiveness of antiretroviral therapy. Global efforts in addressing HIVDR require clear, transparent, and replicable reporting in HIVDR studies. We describe the rationale and recommended use of a checklist that should be included in reports of HIVDR incidence and prevalence.
View Article and Find Full Text PDFStandard-of-care HIV pre-exposure prophylaxis (PrEP) is highly efficacious, but uptake of and persistence on a daily oral pill is low in many settings. Evaluation of alternate PrEP products will require innovation to avoid the unpractically large sample sizes in noninferiority trials. We propose estimating HIV incidence in people not on PrEP as an external counterfactual to which on-PrEP incidence in trial subjects can be compared.
View Article and Find Full Text PDFThe cobas 5800 System ("cobas 5800") is a new low- to mid-throughput PCR-based nucleic acid testing system which performs both qualitative and quantitative testing, including viral load (VL) determination. cobas 5800 shares numerous design elements and technical characteristics with the existing cobas 6800/8800 Systems. We compared HBV, HCV, and HIV-1 VL results from cobas 5800 in three different laboratories to those from the same specimens tested on a cobas 6800 system.
View Article and Find Full Text PDFCabotegravir (CAB) is an integrase strand transfer inhibitor (INSTI) formulated as a long-acting injectable drug approved for pre-exposure prophylaxis and use with a long acting rilpivirine formulation for therapy in patients with virological suppression. However, there has been no comprehensive review of the genetic mechanisms of CAB resistance. Studies reporting the selection of drug resistance mutations (DRMs) by CAB and the results of in vitro CAB susceptibility testing were reviewed.
View Article and Find Full Text PDFIntroduction: The need for detection of new and recent HIV infections is essential for surveillance and assessing interventions in controlling the epidemic. HIV recency assays are one way of providing reliable incidence estimates by determining recent versus non-recent infection. The objective of this study was to review the current body of knowledge of the limiting antigen avidity enzyme immunoassay to expand supported applications through an assessment of what is known and the gaps.
View Article and Find Full Text PDFThe National Institute of Allergy and Infectious Diseases (NIAID) Virology Quality Assurance (VQA) established a robust proficiency testing program for Sanger sequencing (SS)-based HIV-1 drug resistance (HIVDR) testing in 2001. While many of the lessons learned during the development of such programs may also apply to next generation sequencing (NGS)-based HIVDR assays, challenges remain for the ongoing evaluation of NGS-based testing. These challenges include a proper assessment of assay accuracy and the reproducibility of low abundance variant detection, intra- and inter-assay performance comparisons among laboratories using lab-defined tests, and different data analysis pipelines designed for NGS.
View Article and Find Full Text PDFTo support optimal third-line antiretroviral therapy (ART) selection in Namibia, we investigated the prevalence of HIV drug resistance (HIVDR) at time of failure of second-line ART. A cross-sectional study was conducted between August 2016 and February 2017. HIV-infected people ≥15 years of age with confirmed virological failure while receiving ritonavir-boosted protease inhibitor (PI/r)-based second-line ART were identified at 15 high-volume ART clinics representing over >70% of the total population receiving second-line ART.
View Article and Find Full Text PDFNext-generation sequencing (NGS) is increasingly used for HIV-1 drug resistance genotyping. NGS methods have the potential for a more sensitive detection of low-abundance variants (LAV) compared to standard Sanger sequencing (SS) methods. A standardized threshold for reporting LAV that generates data comparable to those derived from SS is needed to allow for the comparability of data from laboratories using NGS and SS.
View Article and Find Full Text PDFHigher accessibility and decreasing costs of next generation sequencing (NGS), availability of commercial kits, and development of dedicated analysis pipelines, have allowed an increasing number of laboratories to adopt this technology for HIV drug resistance (HIVDR) genotyping. Conventional HIVDR genotyping is traditionally carried out using population-based Sanger sequencing, which has a limited capacity for reliable detection of variants present at intra-host frequencies below a threshold of approximately 20%. NGS has the potential to improve sensitivity and quantitatively identify low-abundance variants, improving efficiency and lowering costs.
View Article and Find Full Text PDFHIV drug resistance is a major global challenge to successful and sustainable antiretroviral therapy. Next-generation sequencing (NGS)-based HIV drug resistance (HIVDR) assays enable more sensitive and quantitative detection of drug-resistance-associated mutations (DRMs) and outperform Sanger sequencing approaches in detecting lower abundance resistance mutations. While NGS is likely to become the new standard for routine HIVDR testing, many technical and knowledge gaps remain to be resolved before its generalized adoption in regular clinical care, public health, and research.
View Article and Find Full Text PDFNext-generation sequencing (NGS) is likely to become the new standard method for HIV drug resistance (HIVDR) genotyping. Despite the significant advances in the development of wet-lab protocols and bioinformatic data processing pipelines, one often-missing critical component of an NGS HIVDR assay for clinical use is external quality assessment (EQA). EQA is essential for ensuring assay consistency and laboratory competency in performing routine biomedical assays, and the rollout of NGS HIVDR tests in clinical practice will require an EQA.
View Article and Find Full Text PDFNext generation sequencing (NGS) is a trending new standard for genotypic HIV-1 drug resistance (HIVDR) testing. Many NGS HIVDR data analysis pipelines have been independently developed, each with variable outputs and data management protocols. Standardization of such analytical methods and comparison of available pipelines are lacking, yet may impact subsequent HIVDR interpretation and other downstream applications.
View Article and Find Full Text PDFBackground: The presence of high-abundance drug-resistant HIV-1 jeopardizes success of antiretroviral therapy (ART). Despite numerous investigations, the clinical impact of low-abundance drug-resistant HIV-1 variants (LA-DRVs) at levels <15%-25% of the virus population in antiretroviral (ARV) drug-naive individuals remains controversial.
Methods: We systematically reviewed 103 studies assessing prevalence, detection methods, technical and clinical detection cutoffs, and clinical significance of LA-DRVs in antiretroviral drug-naive adults.
Background: Integrase strand transfer inhibitors (INSTIs) are expected to be widely adopted globally, requiring surveillance of resistance emergence and transmission.
Objectives: We therefore sought to develop a standardized list of INSTI-resistance mutations suitable for the surveillance of transmitted INSTI resistance.
Methods: To characterize the suitability of the INSTI-resistance mutations for transmitted HIV-1 drug resistance (TDR) surveillance, we classified them according to their presence on published expert lists, conservation in INSTI-naive persons, frequency in INSTI-treated persons and contribution to reduced in vitro susceptibility.
Background: Two manufacturers, Maxim Biomedical and Sedia Biosciences Corporation, supply CDC-approved versions of the HIV-1 Limiting Antigen Avidity EIA (LAg) for detecting 'recent' HIV infection in cross-sectional incidence estimation. This study assesses and compares the performance of the two assays for incidence surveillance.
Methods: We ran both assays on a panel of 2,500 well-characterized HIV-1-infected specimens.
Introduction: Next-generation sequencing (NGS) has several advantages over conventional Sanger sequencing for HIV drug resistance (HIVDR) genotyping, including detection and quantitation of low-abundance variants bearing drug resistance mutations (DRMs). However, the high HIV genomic diversity, unprecedented large volume of data, complexity of analysis and potential for error pose significant challenges for data processing. Several NGS analysis pipelines have been developed and used in HIVDR research; however, the absence of uniformity in data processing strategies results in lack of consistency and comparability of outputs from different pipelines.
View Article and Find Full Text PDFAccurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays.
View Article and Find Full Text PDFBackground: Pretreatment drug resistance in people initiating or re-initiating antiretroviral therapy (ART) containing non-nucleoside reverse transcriptase inhibitors (NNRTIs) might compromise HIV control in low-income and middle-income countries (LMICs). We aimed to assess the scale of this problem and whether it is associated with the intiation or re-initiation of ART in people who have had previous exposure to antiretroviral drugs.
Methods: This study was a systematic review and meta-regression analysis.
Introduction: Accurate incidence estimates are needed to characterize the HIV epidemic and guide prevention efforts. HIV Incidence assays are cost-effective laboratory assays that provide incidence estimates from cross-sectional surveys. We conducted a global market assessment of HIV incidence assays under three market scenarios and estimated the economic value of improved incidence assays.
View Article and Find Full Text PDF