In principle, the development of sensory receptive fields in cortex could arise from experience-independent mechanisms that have been acquired through evolution, or through an online analysis of the sensory experience of the individual animal. Here we review recent experiments that suggest that the development of direction selectivity in carnivore visual cortex requires experience, but also suggest that the experience of an individual animal cannot greatly influence the parameters of the direction tuning that emerges, including direction angle preference and speed tuning. The direction angle preference that a neuron will acquire can be predicted from small initial biases that are present in the naïve cortex prior to the onset of visual experience.
View Article and Find Full Text PDFSensory experience is necessary for the development of some receptive field properties of neurons in primary sensory cortical areas. However, it remains unclear whether the parameters of an individual animal's experience play an instructive role and influence the tuning parameters of cortical sensory neurons as selectivity emerges, or rather whether experience merely permits the completion of processes that are fully seeded at the onset of experience. Here we have examined whether the speed of visual stimuli that are presented to visually naive ferrets can influence the parameters of speed tuning and direction selectivity in cortical neurons.
View Article and Find Full Text PDFMany circuits in the mammalian brain are organized in a topographic or columnar manner. These circuits could be activated-in ways that reveal circuit function or restore function after disease-by an artificial stimulation system that is capable of independently driving local groups of neurons. Here we present a simple custom microscope called ProjectorScope 1 that incorporates off-the-shelf parts and a liquid crystal display (LCD) projector to stimulate surface brain regions that express channelrhodopsin-2 (ChR2).
View Article and Find Full Text PDFSensory experience plays a critical role in the development of cortical circuits. At the time of eye opening, visual cortical neurons in the ferret exhibit orientation selectivity, but lack direction selectivity, which is a feature of mature cortical neurons in this species. Direction selectivity emerges in the days and weeks following eye opening via a process that requires visual experience.
View Article and Find Full Text PDF