Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune-driven connective tissue disorder that results in fibrosis of the skin and internal organs such as the lung. Fibroblasts are known as the main effector cells involved in the progression of SSc through the induction of extracellular matrix (ECM) proteins and myofibroblast differentiation. Here, we demonstrate that 4'-(cyclopropylmethyl)-N2-4-pyridinyl-[4,5'-bipyrimidine]-2,2'-diamine (PIK-III), known as class III phosphatidylinositol 3-kinase (PIK3C3/VPS34) inhibitor, exerts potent antifibrotic effects in human dermal fibroblasts (HDFs) by attenuating transforming growth factor-beta 1 (TGF-β1)-induced ECM expression, cell contraction and myofibroblast differentiation.
View Article and Find Full Text PDFAdaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of , a tumor suppressor, in human NSCLC.
View Article and Find Full Text PDFAnalysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis.
View Article and Find Full Text PDFRegulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT.
View Article and Find Full Text PDFRationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component.
Objective: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and COPD patients with varying degrees of emphysema.
Methods: Lung sections from 40 COPD patients and ever-smokers were used for LF proteomic and transcriptomic spatial profiling.
Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling.
View Article and Find Full Text PDFSarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease.
View Article and Find Full Text PDFFlavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease.
View Article and Find Full Text PDFInvestigator-generated transcriptomic datasets interrogating circulating immune cell (CIC) gene expression in clinical type 1 diabetes (T1D) have underappreciated re-use value. Here, we repurposed these datasets to create an open science environment for the generation of hypotheses around CIC signaling pathways whose gain or loss of function contributes to T1D pathogenesis. We firstly computed sets of genes that were preferentially induced or repressed in T1D CICs and validated these against community benchmarks.
View Article and Find Full Text PDFAlthough PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.
View Article and Find Full Text PDFAlthough antipsychotics, such as olanzapine, are effective in the management of psychiatric conditions, some patients experience excessive antipsychotic-induced weight gain (AIWG). To illuminate pathways underlying AIWG, we compared baseline blood gene expression profiles in two cohorts of mice that were either prone (AIWG-P) or resistant (AIWG-R) to weight gain in response to olanzapine treatment for two weeks. We found that transcripts elevated in AIWG-P mice relative to AIWG-R are enriched for high-confidence transcriptional targets of numerous inflammatory and immunomodulatory signaling nodes.
View Article and Find Full Text PDFBackground & Aims: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease (NAFLD), which affects a quarter of the world's population and is associated with hepatitis, cirrhosis, and hepatocellular carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model.
View Article and Find Full Text PDFA subset of CD4 + lymphocytes, regulatory T cells (Tregs), are necessary for central tolerance and function as suppressors of autoimmunity against self-antigens. The SRC-3 coactivator is an oncogene in multiple cancers and is capable of potentiating numerous transcription factors in a wide variety of cell types. Src-3 knockout mice display broad lymphoproliferation and hypersensitivity to systemic inflammation.
View Article and Find Full Text PDFEstablishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of CoV infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection.
View Article and Find Full Text PDFDiscovery-scale omics datasets relevant to thyroid receptors (TRs) and their physiological and synthetic bioactive small-molecule ligands allow for genome-wide interrogation of TR-regulated genes. These datasets have considerable collective value as a reference resource to allow researchers to routinely generate hypotheses addressing the mechanisms underlying the cell biology and physiology of TR signaling in normal and disease states. Here, we searched the Gene Expression Omnibus database to identify a population of publicly archived transcriptomic datasets involving genetic or pharmacological manipulation of either TR isoform in a mouse tissue or cell line.
View Article and Find Full Text PDFMining of integrated public transcriptomic and ChIP-Seq (cistromic) datasets can illuminate functions of mammalian cellular signaling pathways not yet explored in the research literature. Here, we designed a web knowledgebase, the Signaling Pathways Project (SPP), which incorporates community classifications of signaling pathway nodes (receptors, enzymes, transcription factors and co-nodes) and their cognate bioactive small molecules. We then mapped over 10,000 public transcriptomic or cistromic experiments to their pathway node or biosample of study.
View Article and Find Full Text PDFThe volume and diversity of data in biomedical research have been rapidly increasing in recent years. While such data hold significant promise for accelerating discovery, their use entails many challenges including: the need for adequate computational infrastructure, secure processes for data sharing and access, tools that allow researchers to find and integrate diverse datasets, and standardized methods of analysis. These are just some elements of a complex ecosystem that needs to be built to support the rapid accumulation of these data.
View Article and Find Full Text PDFWe previously developed a web tool, Transcriptomine, to explore expression profiling data sets involving small-molecule or genetic manipulations of nuclear receptor signaling pathways. We describe advances in biocuration, query interface design, and data visualization that enhance the discovery of uncharacterized biology in these pathways using this tool. Transcriptomine currently contains about 45 million data points encompassing more than 2000 experiments in a reference library of nearly 550 data sets retrieved from public archives and systematically curated.
View Article and Find Full Text PDFAlthough omics datasets represent valuable assets for hypothesis generation, model testing, and data validation, the infrastructure supporting their reuse lacks organization and consistency. Using nuclear receptor signaling transcriptomic datasets as proof of principle, we developed a model to improve the discoverability, accessibility, and citability of published omics datasets. Primary datasets were retrieved from archives, processed to extract data points, then subjected to metadata enrichment and gap filling.
View Article and Find Full Text PDFThe pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways.
View Article and Find Full Text PDFNuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue.
View Article and Find Full Text PDF